Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 269 (1991), S. 1171-1183 
    ISSN: 1435-1536
    Keywords:
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The preparation of microlatex dispersions from microemulsions of a monomer (styrene, methylmethacrylate or vinyl acetate) is described. A simple method for preparing the microemulsion has been devised. This consists of forming a water-in-oil (w/o) emulsion using a low (HLB) surfactant (nonylphenol with 5, 6 or 7 moles ethylene oxide) and then titrating with an aqueous solution of a high HLB surfactant (nonylphenol with 15 or 16 moles ethylene oxide). A small amount of anionic surfactant (sodium lauryl sulphate, sodium dodecyl benzene sulphonate or dioctyl sulphosuccinate) was also incorporated to enhance the stability of the w/o emulsion and facilitate the inversion to an o/w microemulsion. The droplet-size distribution of the resulting microemulsion was determined using photon-correlation spectroscopy. Three different methods of polymerising the microemulsion were used. These were thermally induced polymerisation using potassium persulphate, azobis-2-methyl propamidinium dichloride (AMP-water-soluble initiators) or azobisisobutyronitrile (AIBN, an oil-soluble initiator). All these initiators required heating to 60°C, i.e. above the stability temperature of the microemulsion. In this case, the microlatices produced were fairly large (37–100 nm diameter) and had a broad particle-size distribution. The second polymerisation procedure was chemically induced using a redox system of hydrogen peroxide and ascorbic acid. This produced microlatices with small sizes (18–24 nm diameter) having a narrow-size distribution. The microlatex size was roughly two to three times the size of the microemulsion droplets. This showed that collision between two or three microemulsion droplets resulted in their coalescence during the polymerisation process. The third method of polymerisation was based on UV irradiation in conjunction with K2S2O8, AMP or AIBN initiators. In this case, the microlatex size was also small (30–63 nm) with a narrow particle-size distribution. Microlatex particles were also prepared using a mixture of monomers (styrene plus methylmethacrylate) or mixture of monomers and a macromonomer, namely methoxy (polyethylene glycol)methacrylate. The latter was used to produce “hairy” particles, i.e. with grafted polyethylene oxide (PEO) chains. The stability of the microlatices was determined by adding electrolytes (NaCl, CaCl2, Na2SO4 or MgSO4) to determine the critical flocculation concentration (CFC). The nonionic latices were very stable giving no flocculation up to 6 mol dm−3 NaCl or CaCl2 and a CFC of 0.6 mol dm−3 for Na2SO4 or MgSO4. Charged latices were less stable than the nonionic ones. The critical flocculation temperatures (CFT) of all latices were determined as a function of electrolyte concentration. With the nonionic latices, CFC was higher than the θ-temperature for polyethylene oxide at the given electrolyte concentration. This indicated enhanced steric stabilisation as a result of the dense packing of the chains and hence an elastic contribution to the steric interaction. This was not the case with the charged latex, which showed CFT values lower than the θ-temperature. The “hairy” latices [i.e. those containing methoxy polyethylene glycol (PEG) methacrylate] were also less stable towards electrolyte (CFT was much lower than θ-temperature), indicating a low density of PEO layers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-904X
    Keywords: poly(lactide)-poly(ethylene glycol) copolymers ; poly(lactide-co-glycolide) ; biodegradable ; nanospheres ; steric stabilization ; surface characterization ; biodistribution ; blood clearance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The modification of surface properties of biodegradable poly(lactide-co-glycolide) (PLGA) and model polystyrene nanospheres by poly(lactide)-poly(ethlene glycol) (PLA:PEG) copolymers has been assessed using a range of in vitro characterization methods followed by in vivo studies of the nanospheres biodistribution after intravenous injection into rats. Coating polymers with PLA:PEG ratio of 2:5 and 3:4 (PEG chains of 5000 and 2000 Da, respectively) were studied. The results reveal the formation of a PLA: PEG coating layer on the particle surface resulting in an increase in the surface hydrophilicity and decrease in the surface charge of the nanospheres. The effects of addition of electrolyte and changes in pH on stability of the nanosphere dispersions confirm that uncoated particles are electrostatically stabilized, while in the presence of the copolymers, steric repulsions are responsible for the stability. The PLA:PEG coating also prevented albumin adsorption onto the colloid surface. The evidence that this effect was observed for the PLA:PEG 3:4 coated nanospheres may indicate that a poly(ethylene glycol) chain of 2000 Da can provide an effective repulsive barrier to albumin adsorption. The in vivo results reveal that coating of PLGA nanospheres with PLA:PEG copolymers can alter the biodistribution in comparison to uncoated PLGA nanospheres. Coating of the model polystyrene nanospheres with PLA:PEG copolymers resulted in an initial high circulation level, but after 3 hours the organ deposition data showed values similar to uncoated polystyrene spheres. The difference in the biological behaviour of coated PLGA and polystyrene nanospheres may suggest a different stability of the adsorbed layers on these two systems. A similar biodistribution pattern of PLA:PEG 3:4 to PEG 2:5 coated particles may indicate that poly(ethylene glycol) chains in the range of 2000 to 5000 can produce a comparable effect on in vivo behaviour.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...