Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-739X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemical research in toxicology 3 (1990), S. 171-194 
    ISSN: 1520-5010
    Source: ACS Legacy Archives
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-5010
    Source: ACS Legacy Archives
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0738
    Keywords: Glutathione S-transferases ; Class mu ; Genetic polymorphism ; 1,3-Dichloropropene ; Mercapturic acids ; Biomonitoring
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Mononuclear lymphocytes were isolated from the blood of 12 individuals, who had been exposed to the vapour of the soil fumigant 1,3-dichloropropene (DCP). Western blot experiments were performed on the crude lymphocyte homogenates, using a monoclonal antibody against human hepatic glutathione S-transferase (GST) isoenzyme μ, to determine the presence or absence of mu-class isoenzymes μ, and/or ψ. Nine of the individuals were found to be positive for μ and/or ψ, the remaining three individuals being negative. In addition, all individuals showed a positive staining on immunoblot of a protein of somewhat lower molecular mass than the hepatic standard. This protein was bound by the S-hexylglutathione affinity column, and presumably constitutes a new mu-class isoenzyme, which is not subject to genetic polymorphism. Determination of the specific activities of individual human GST isoenzymes towards Z-(cis-) and E-(trans-)-DCP demonstrated that mu-class isoenzymes show a considerably higher specific activity with Z-DCP than alpha-class or pi-class isoenzymes. In addition, mu-class isoenzymes were found to be 2- to 3-fold more active with Z-DCP than with E-DCP. Their activity towards E-DCP was similar to the specific activity of alpha-class isoenzymes. Genetic polymorphism for mu-class isoenzymes could thus be a determinant in the extent of excretion of mercapturic acids from Z- and E-DCP. The urinary excretion of Z- and E-DCP mercapturic acids and the respiratory exposure to Z- and E-DCP were determined for nine and eight phenotyped individuals, respectively. Urinary excretion levels (corrected for the time weighted average 8-h exposure), the urinary ratio and the elimination half-lives of the mercapturic acids of Z- and E-DCP were compared with the data on the mu-phenotype. No statistically significant differences were observed between mu-class positive and mu-class negative individuals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0738
    Keywords: Trichloroethylene ; Mercapturic acid ; Cysteine conjugate ; Cytotoxicity ; Mutagenicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The mutagenicity, cytotoxicity and metabolism of two regioisomicl-cysteine- and N-acetyl-l-cysteine-S-conjugates of trichloroethylene were studied. The 1,2-dichlorovinyl(1,2-DCV) isomers of both the cysteine conjugate and the mercapturate were much stronger mutagens in the Ames test withSalmonella typhimurium TA2638 when compared to the corresponding 2,2-dichlorovinyl (2,2-DCV) isomers. Similarly, the 1,2-DCV isomers were more cytotoxic towards isolated rat kidney proximal tubular cells, as assessed by inhibition of α-methylglucose uptake, than the 2,2-DCV isomers. The 3–4-fold higher rate of β-lyase-dependent activation of S-(1,2-dichlorovinyl)-l-cysteine (1,2-DCV-Cys) when compared to S-(1,2-dichlorovinyl)-l-cysteine (2,2-DCV-Cys) as well as the different nature of the reactive intermediates formed is probably responsible for these structure-dependent effects. The cytotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-l-cysteine (1,2-DCV-NAc) toward isolated kidney cells showed a delayed time course as compared to that of 1,2-DCV-Cys, probably due to the relatively low rate of deacetylation of 1,2-DCV-NAc. The time course of cytotoxicity of N-acetyl-S-(2,2-dichlorovinyl)-l-cysteine (2,2-DCV-NAc), however, parallelled that of 2,2-DCV-Cys. Due to the relatively high rate of N-acetylation and low rate of β-lyase activation, for 2,2-DCV-Nac the β-lyase activation step may be rate limiting. Different rates of cellular uptake also may play a role in time course of toxicity of the cysteine conjugates and the mercapturic acids in the renal cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4951
    Keywords: Cytochromes P450 ; P450 2D6 ; P450 101 ; 3D model ; Active site residues ; Homology building
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary A homology model building study of cytochrome P450 2D6 has been carried out based on the crystal structure of cytochrome P450 101. The primary sequences of P450 101 and P450 2D6 were aligned by making use of an automated alignment procedure. This alignment was adjusted manually by matching α-helices (C, D, G, I, J, K and L) and β-sheets (β3/β4) of P450 101 that are proposed to be conserved in membrane-bound P450s (Ouzounis and Melvin [Eur. J. Biochem., 198 (1991) 307]) to the corresponding regions in the primary amino acid sequence of P450 2D6. Furthermore, α-helices B, B′ and F were found to be conserved in P450 2D6. No significant homology between the remaining regions of P450 101 and P450 2D6 could be found and these regions were therefore deleted. A 3D model of P450 2D6 was constructed by copying the coordinates of the residues from the crystal structure of P450 101 to the corresponding residues in P450 2D6. The regions without a significant homology with P450 101 were not incorporated into the model. After energy-minimization of the resulting 3D model of P450 2D6, possible active site residues were identified by fitting the substrates debrisoquine and dextrometorphan into the proposed active site. Both substrates could be positioned into a planar pocket near the heme region formed by residues Val370, Pro371, Leu372, Trp316, and part of the oxygen binding site of P450 2D6. Furthermore, the carboxylate group of either Asp100 or Asp301 was identified as a possible candidate for the proposed interaction with basic nitrogen atom(s) of the substrates. These findings are in accordance with a recently published predictive model for substrates of P450 2D6 [Koymans et al., Chem. Res. Toxicol., 5 (1992) 211].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 12 (1993), S. 357-366 
    ISSN: 1573-0778
    Keywords: anticancer drugs ; cytochrome P450 ; drug resistance ; metabolic activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Cytochromes P450 are the key enzymes for activating and inactivating many drugs, in particular anticancer drugs. Therefore, individual expression levels of cytochromes P450 may play a crucial role in drug safety and drug efficacy. Overexpression of cytochrome P450 may yield rapid turnover and elimination of drugs before the target site was reached and any pharmacological effect is observed. Therefore, it may be vital to know the individual cytochrome P450 status in order to select the appropriate drug before drug resistance occurs. Expression levels and activity of cytochromes P450 depend on many different factors. These factors include tissue and organ specific expression, sex- and age-dependent expression, genetic differences yielding polymorphic forms, competitive inhibition or induction of cytochromes P450 due to multiple drug interaction, nutrition and diet. Genetically engineered test cells defined for cytochromes P450 are available for studying drugs for metabolic activation and for identifying the metabolically competent cytochrome P450 isoform.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...