Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 168 (1986), S. 408-413 
    ISSN: 1432-2048
    Keywords: Callus culture (nicotine pathway) ; Nicotiana (nicotine pathway) ; Nicotine biosynthesis ; Pyridine nucleotide cycle ; Pyridine nucleotide glycohydrolase ; Quinolinic acid phosphoribosyltransferase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In tobacco callus, the induction of nicotine synthesis, which stimulates enzyme activities of the ornithine-methylpyrroline route (see the preceding paper), also leads to marked changes in the enzyme activities of the pyridine-nucleotide cycle. This cycle provides the metabolite (probably nicotinic acid) for condensation with methylpyrroline to produce nicotine. The activities of eight enzymes of the pyridine-nucleotide cycle and of quinolinic-acid phosphoribosyltransferase, the anaplerotic enzyme, were determined by high-performance liquid chromatography assays. The distinct changes of their activities upon induction of nicotine synthesis lead to the following conclusions: i) nicotinic acid is the relevant metabolite which is provided by the pyridine-nucleotide cycle and consumed for nicotine synthesis. ii) The enhancement of the nicotinic-acid pool arises in two ways, by synthesis of NAD and degradation via nicotinamide mononucleotide and by a direct route from nicotinic-acid mononucleotide (NaMN) which is degraded by a glycohydrolase with a rather high K m value. Such a K m value prevents the complete depletion of the NaMN pool.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...