Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • 1975-1979  (1)
  • Electron microscopy
  • Inhibition
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of dermatological research 281 (1989), S. 254-259 
    ISSN: 1432-069X
    Keywords: Innermost cell layer ; Tonofilaments ; Huxley's cells ; Henle's cells ; Anagen hair follicles ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To elucidate the biologic roles and further cytologic characteristics of the innermost cell (IMC) layer of the outer root sheath (ORS), human anagen hair follicles were ultrastructurally examined. In the lower follicle, the transeversely running tonofilaments in the inner side of the cytoplasm of the IMCs showed a massive accumulation, facing the keratinized part of a Huxley's cell protruding through a Henle's pore. In a rare instance, a spindle-shaped cell was seen between the IMC layer and the keratinized Henle's layer. At the lower isthmus portion, some of the IMCs containing a large number of tonofilaments showed a partial degeneration of the inner side of the cytoplasm. More distally, intercellular spaces between the keratinized IMCs and keratinized Henle's cells were partly dilated and contained amorphous substances. It is suggested that the IMCs in the lower follicle may play a role to support and cover the inner hair structures, tightly as hoops of a barrel. In the isthmus portion, the IMCs may loosely support and guide the keratinized Henle's cells undergoing degeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 26 (1976), S. 89-103 
    ISSN: 1432-1106
    Keywords: Vestibular ; Oculomotor ; Canal ; Inhibition ; Rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anesthetized albino rabbits, electric pulse stimulation was applied to ampullary branches of the vestibular nerve. Reflex discharges evoked from a canal in an extraocular muscle were depressed very effectively by conditioning stimulation at a certain other canal. The present systematic survey revealed that this reflex depression occurred specifically in 3 combinations of conditioning and testing canals; 1. anterior and posterior canals of the same side; 2. anterior and posterior canals of the opposite sides; and 3. horizontal canals of the two sides. Occurrence of postsynaptic inhibition in oculomotor neurons, on the other hand, was indicated by appearance of slow muscle potentials in extraocular muscles. It was confirmed that this motoneuronal inhibition did not contribute to the reflex depression in the above combination (1). Even in combinations (2) and (3), the accompanying motoneuronal inhibition was eliminated by adjusting intensities of canal stimuli or by severing its pathway in the medulla, or it was discriminated from the reflex depression by their different latencies and time courses. Hence, it was concluded that the reflex depression was attributable, at least largely, to non-motoneuronal inhibition, presumably postsynaptic inhibition at relay neurons for vestibulo-ocular reflexes. Slow muscle potentials evoked from a canal were also used as testing responses, but their depression could not be detected after conditioning at other canals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...