Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (5)
  • 1975-1979  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 38 (1979), S. 13-21 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The photosynthetic response properties of individuals of Solanum dulcamara L. collected from sun and shade habitats were compared in controlled environments. Light-saturated photosynthetic rates and seven additional parameters associated with photosynthetic and growth performance were measured over a range of 12 environmental conditions that simulated natural habitat differences in light intensity, moisture availability and daily temperature amplitude. In contrast to previous studies, the results suggest there is no ecotypic differentiation with respect to the sun and shade environments from which the individuals were collected. It appears that all but one of the field-collected individuals are capable of successfully inhabiting the full range of light environments from which the species was collected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 90 (1986), S. 575-587 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The prokaryotic green alga Prochloron sp. (Prochlorophyta) is found in symbiotic association with colonial didemnid ascidians that inhabit warm tropical waters in a broad range of light environments. We sought to determine the light-adaptation features of this alga in relation to the natural light environments in which the symbioses are found, and to characterize the temperature sensitivity of photosynthesis and respiration of Prochloron sp. in order to assess its physiological role in the productivity and distribution of the symbiosis. Colonies of the host ascidian Lissoclinum patella were collected from exposed and shaded habitats in a shallow lagoon in Palau, West Caroline Islands, during February and March, 1983. Some colonies from the two light habitats were maintained under conditions of high light (2 200 μE m−2 s−1) and low light (400 μE m−2 s−1) in running seawater tanks. The environments were characterized in terms of daily light quantum fluxes, daily periods of light-saturated photosynthesis (Hsat), and photon flux density levels. Prochloron sp. cells were isolated from the hosts and examined for their photosynthesis vs irradiance relationships, respiration, pigment content and photosynthetic unit features. In addition, daily P:R ratios, photosynthetic quotients, carbon balances and photosynthetic carbon release were also characterized. It was found that Prochloron sp. cells from low-light colonies possessed lower chlorophyll a/b ratios, larger photosynthetic units sizes based on both reaction I and reaction II, similar numbers of reaction center I and reaction center II per cell, lower respiration levels, and lower Pmax values than cells from high-light colonies. Cells isolated from low-light colonies showed photoinhibition of Pmax at photon flux densities above 800 μE m−2 s−1. However, because the host tissue attenuates about 60 to 80% of the incident irradiance, it is unlikely that these cells are normally photoinhibited in hospite. Collectively, the light-adaptation features of Prochloron sp. were more similar to those of eukaryotic algae and vascular plant chloroplasts than to those of cyanobacteria, and the responses were more sensitive to the daily flux of photosynthetic quantum than to photon flux density per se. Calculation of daily minimum carbon balances indicated that, though high-light cells had daily P:R ratios of 1.0 compared to 4.6 for low-light cells, the cells from the two different light environments showed nearly identical daily carbon gains. Cells isolated from high-light colonies released between 15 and 20% of their photosynthetically-fixed carbon, levels sufficient to be important in the nutrition of the host. Q10 responses of photosynthesis and respiration in Prochloron sp. cells exposed briefly (15–45 min) to temperatures between 15° and 45°C revealed a discontinuity in the photosynthetic response at the ambient growth temperatures. The photosynthetic rates were found to be more than twice as sensitive to temperatures below ambient (Q10=3.47) than to temperatures above ambient (Q10=1.47). The Q10 for respiration was constant (Q10=1.66) over the temperature range examined. It appears that the photosynthetic temperature sensitivity of Prochloron sp. may restrict its distribution to warmer tropical waters. The ecological implications of these findings are discussed in relation to published data on other symbiotic systems and free-living algae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 86 (1985), S. 63-74 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Marine Synechococcus spp. are sufficiently abundant to make a significant contribution to primary productivity in the ocean. They are characterized by containing high cellular levels of phycoerythrin which is highly fluorescent in vivo. We sought (Jan.–Apr., 1984) to determine the adaptive photosynthetic features of two clonal types of Synechococcus spp., and to provide a reliable physiological basis for interpreting remote sensing data in terms of the biomass and productivity of this group in natural assemblages. It was found that the two major clonal types optimize growth and photosynthesis at low photon flux densities by increasing the numbers of photosynthetic units per cell and by decreasing photosynthetic unit size. The cells of clone WH 7803 exhibited dramatic photoinhibition of photosynthesis and reduction in growth rate at high photon flux densities, accompanied by a large and significant increase in phycoerythrin fluorescence. Maximal photosynthesis of cells grown under 10–50 μE m-2 s-1 was reduced by 20 to 30% when the cells were exposed to photon flux densities greater than 150 μE m-2 s-1. However, steady-state levels of photosynthesis maintained for brief periods under these conditions were higher than those of cells grown continuously at high photon flux densities. No photoinhibition occurred in clone WH 8018 and rates of photosynthesis were greater than in WH 7803. Yields of in-vivo phycoerythrin fluorescence under all growth photon flux densities were lower in clone WH 8018 compared to clone WH 7803. Since significant inverse correlations were obtained between phycoerythrin fluorescence and Pmax and μ for both clones grown in laboratory culture, it may be possible to provide a reliable means of assessing the physiological state, photosynthetic capacity and growth rate of Synechococcus spp. in natural assemblages by remote sensing of phycoerythrin fluorescence. Poor correlations between phycoerythrin fluorescene and pigment content indicate that phycoerythrin fluorescence may not accurately estimate Synechococcus spp. biomass based on pigment content alone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The temperate seagrass Zostera marina L. typically grows in highly reducing sediments. Photosynthesis-mediated O2 supplied to below-ground tissues sustains aerobic respiration during photosynthetic periods. Roots, however, experience daily periods of anoxia and/or hypoxia at night and under conditions that reduce photosynthesis. Rhizosphere cores of Z. marina were collected in August 1984 from Great Harbor, Massachusetts, USA. We examined short-term anaerobic metabolism of [U-14C]sucrose in excised roots and roots of intact plants. Under anaerobic conditions roots showed appreciable labeling of CO2, ethanol and lactate, and slight labeling of alanine and other metabolites. Over 95% of the 14C-ethanol was recovered in the root exudate. Release of other metabolites from the roots was minimal. Ethanol was also released from hypoxic/anoxic roots of intact plants and none of this ethanol was transported to the shoot under any experimental conditions. Loss of ethanol from roots prevented tissue levels of this phytotoxin from increasing during anaerobiosis despite increased synthesis of ethanol. Anaerobic metabolism of [U-14C]glutamate in excised roots led to appreciable labelling of γ-aminobutyrate, which was known to accumulate in eelgrass roots. Roots recovered to fully aerobic metabolism within 4 h after re-establishment of aerobic conditions. The contributions of these root metabolic responses to the ability of Z. marina to grow in reducing marine sediments are related to light-regulated interactions of shoots and roots that likely dictate depth penetration, distribution and ecological success of eelgrass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 94 (1987), S. 469-477 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The interaction of sediment ammonium (NH 4 + ) availability and eelgrass (Zostera marina L.) growth, biomass and photosynthesis was investigated using controlled environment and in-situ manipulations of pore water ammonium concentrations. Sediment diffusers were used to create pore water diffusion gradients to fertilize and deplete ammonium levels in sediments with intact eelgrass rhizospheres. Between October, 1982 and September, 1983 controlled environment experiments using plants from shallow (1.3 m) and deep (5.5 m) stations in a Great Harbor, Woods Hole, Massachusetts, USA eelgrass meadow along with in-situ experiments at these stations provided a range of sediment ammonium concentrations between 0.1 and 10 mM (adsorbed+interstitial NH 4 + ). The results of the in-situ experiments indicate that nitrogen limitation of eelgrass growth does not occur in the Great Harbor eelgrass meadow. A comparison of NH 4 + regeneration rates and eelgrass nitrogen requirements indicates an excess of nitrogen supply over demand and provides an explanation for the lack of response to the manipulations. Results of controlled environment experiments combined with in-situ results suggest that sediment ammonium pool concentrations above approximately 100 μmol NH 4 + per liter of sediment (interstitial only) saturate the growth response of Zostera marina.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A number of species of macroalagae possess a flat, strap-like blade morphology in habitats exposed to rapidly-moving water whereas those at protected sites have a wider, undulate blade shape. We have explored the functional consequences of flat, narrow vs. wide, undulate blade morphologies in the giant bull kelpNereocystis luetkeana. Our study focused on the behavior of blades in ambient water currents and the consequences of that behavior to breakage and to photosynthesis. In flowing water, the narrow, flat blades flap with lower amplitude and collapse together into a more streamlined bundle than do wide, undulate blades, and hence experience lower drag per blade area at a given flow velocity. If the algae at current-swept sites had ruffled blades, drag forces would sometimes be sufficient to break the stipes. However, flat blades in a streamlined bundle experience more self-shading than do undulate blades, which remain spread out in water currents. Thus, there is a morphological trade-off between reducing drag and reducing self-shading. Photosynthetic14C-HCO3 uptake rates decrease in slow flow when the boundary layer along the blade surface across which diffusion takes place is relatively thick. However, blade flapping, which stirs water near the blade surface, enhances carbon uptake rates in slow water currents for both the undulate and the flat morphologies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...