Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 36 (1988), S. 1467-1473 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Because of their incompatibility and the different refractive indices of the homopolymer components, polyurethane/polystyrene interpenetrating polymer networks are turbid by nature. Different parameters likely to enhance their transparency are examined: the crosslink density of each network and the level of internetwork grafting. The results prove that the latter factor is the most effective, as in some cases, very clear and transparent samples are obtained. Correspondingly, preliminary investigations of the dynamic mechanical properties show an inward shift of the glass transition temperatures for such systems. It is concluded that parameters able to cause a higher degree of phase dispersion can yield transparent materials.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 133-140 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The spontaneous imidization of acrylamide during polymerization has been studied in three media: benzene, diglyme, and water. The data indicate that neither medium, time, nor temperatures below 140°C cause imidization to occur. The ascription of the low nitrogen found in polyacrylamide by some investigators to imide formation appears to be in error. The low nitrogen is due rather to retained solvent and/or water, for which polyacrylamide has a strong affinity. Imidization may be brought about by strong acids. The solubility of an imidized polyacrylamide decreases with increasing imide content.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 3037-3042 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: It was reported earlier that the copolymerization of acrylamide and styrene is strongly affected by the copolymerization medium. The effect was attributed to a change in the polarity of the ethylenic bond in the acrylamide monomer due to hydrogen bonding and/or dipole - dipole interaction, depending on the medium. In view of those findings, it was suggested that absolute values for the reactivity ratios for the copolymerization of these two monomers might be obtained only when the acrylamide monomer is unperturbed. Copolymerizations of these monomers at a number of ratios, therefore, were done in benzene, which does not undergo hydrogen bonding and has no dipole moment, at high dilution, when amide - amide interactions between acrylamide molecules should be essentially eliminated. The values of r1 and r2(M1 = acrylamide) were 9.14 ± 0.27 and 0.67 ± 0.08, respectively. There appears to be some indication in this system that high dilution adversely affects the reactivity of the acrylamide monomer while enhancing that of styrene. This aspect requires more study.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...