Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (3)
  • 1960-1964
  • 1890-1899
  • 1840-1849
  • inductive learning  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Machine learning 1 (1986), S. 287-315 
    ISSN: 0885-6125
    Keywords: inductive learning ; deductive learning ; knowledge level ; learning theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract When Newell introduced the concept of the knowledge level as a useful level of description for computer systems, he focused on the representation of knowledge. This paper applies the knowledge level notion to the problem of knowledge acquisition. Two interesting issues arise. First, some existing machine learning programs appear to be completely static when viewed at the knowledge level. These programs improve their performance without changing their ‘knowledge.’ Second, the behavior of some other machine learning programs cannot be predicted or described at the knowledge level. These programs take unjustified inductive leaps. The first programs are called symbol level learning (SLL) programs; the second, nondeductive knowledge level learning (NKLL) programs. The paper analyzes both of these classes of learning programs and speculates on the possibility of developing coherent theories of each. A theory of symbol level learning is sketched, and some reasons are presented for believing that a theory of NKLL will be difficult to obtain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Machine learning 1 (1986), S. 287-315 
    ISSN: 0885-6125
    Keywords: inductive learning ; deductive learning ; knowledge level ; learning theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract When Newell introduced the concept of the knowledge level as a useful level of description for computer systems, he focused on the representation of knowledge. This paper applies the knowledge level notion to the problem of knowledge acquisition. Two interesting issues arise. First, some existing machine learning programs appear to be completely static when viewed at the knowledge level. These programs improve their performance without changing their ‘knowledge’. Second, the behavior of some other machine learning programs cannot be predicted or described at the knowledge level. These programs take unjustified inductive leaps. The first programs are called symbol level learning (SLL) programs; the second, nondeductive knowledge level learning (NKLL) programs. The paper analyzes both of these classes of learning programs and speculates on the possibility of developing coherent theories of each. A theory of symbol level learning is sketched, and some reasons are presented for believing that a theory of NKLL will be difficult to obtain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Machine learning 4 (1989), S. 187-226 
    ISSN: 0885-6125
    Keywords: Learning from examples ; induction over explanations ; explanation-based learning ; inductive learning ; knowledge compilation ; evaluation of learning methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract This paper formalizes a new learning-from-examples problem: identifying a correct concept definition from positive examples such that the concept is some specialization of a target concept defined by a domain theory. It describes an empirical study that evaluates three methods for solving this problem: explanation-based generalization (EBG), multiple example explanation-based generalization (mEBG), and a new method, induction over explanations (IOE). The study demonstrates that the two existing methods (EBG and mEBG) exhibit two shortcomings: (a) they rarely identify the correct definition, and (b) they are brittle in that their success depends greatly on the choice of encoding of the domain theory rules. The study demonstrates that the new method, IOE, does not exhibit these shortcomings. This method applies the domain theory to construct explanations from multiple training examples as in mEBG, but forms the concept definition by employing a similarity-based generalization policy over the explanations. IOE has the advantage that an explicit domain theory can be exploited to aid the learning process, the dependence on the initial encoding of the domain theory is significantly reduced, and the correct concepts can be learned from few examples. The study evaluates the methods in the context of an implemented system, called Wyl2, which learns a variety of concepts in chess including “skewer” and “knight-fork.”
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...