Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Communications in Applied Numerical Methods 2 (1986), S. 63-72 
    ISSN: 0748-8025
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An integral equation method is presented for the quasi three-dimensional inverse aerofoil and cascade design. Fluid compressibility and vorticity diffusion are introduced by means of sources resp. distribution functions for the boundary vortices. Application of a Taylor development to the kinematical condition, enlarged by an additional source term, leads to a linear equation system for the profile shape and the channel height. Thus, both the velocity distribution and the profile thickness can be prescribed. Several calculations of aerofoil sections and cascades are presented, which illustrate the accuracy and possibilities of the method.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 6 (1986), S. 573-583 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An improved formulation of the inverse integral equation method proposed in Reference 1 is presented which allows, in particular, a well-posed problem to be ensured. The corresponding computation code is tested in an exhaustive manner for axial and radial compressor and turbine cascades. The agreement between the velocity field obtained with the inverse method and that resulting from a direct calculation is examined for subsonic, transonic and supersonic flows. Accuracy and reliability of the solution to the boundary condition problem are excellent for the subsonic and transonic flows. However, for the supersonic flow, the application of the method seems to be limited by the use of elementary solutions of the Laplace operator.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...