Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (3)
  • 1880-1889
  • Acetaldehyde dehydrogenase  (2)
  • 14C loss  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 25 (1987), S. 151-158 
    ISSN: 1432-1432
    Keywords: Experimental evolution ; Acetaldehyde dehydrogenase ; Butanol oxidation ; Alcohol dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Starting withadhC mutants ofEscherichia coli in which alcohol dehydrogenase (ADH) and acetaldehyde CoA dehydrogenase (ACDH) are expressed constitutively at high levels, we selected mutants with still higher levels of both enzymes. Selection for growth on ethanol in the presence of inhibitors of ADH gave several mutants that had from 2- to 10-fold increases in the levels of both enzymes. These mutations were found to map far from theadhC locus at around 90 min. SuchadhR mutants were unable to grow on acetate or ethanol in certain media unless supplemented with extramanganese. This growth disability was suppressed by secondary mutations, one of which,aceX, increased sensitivity to several toxic metals and may perhaps derepress Mn transport. When theadhR mutation expressing the highest ADH and ACDH levels was present together withfadR andatoC mutations (allowing efficient catabolism of acetoacetyl-CoA) and with anaceX mutation, the resulting strains became capable of usingn-butanol as sole carbon and energy source. The use of butanol byE. coli illustrates the artificial evolution of a new catabolic pathway, in this case by the selection of four successive regulatory mutations (fadR, adhC, atoC, andadhR) together with the poorly definedaceX mutation. Each stage in the acquisition of this nove pathway confers the ability to use a new growth substrate: decanoic acid (fadR), ethanol (adhC), butyric acid (atoC), and butanol (adhR, when present withaceX).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 205 (1986), S. 487-493 
    ISSN: 1617-4623
    Keywords: Acetaldehyde dehydrogenase ; Alcohol dehydrogenase ; Chloracetaldehyde ; Anaerobic growth ; Ethanol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mutants of Escherichia coli resistant to chloroethanol or to chloroacetaldehyde were selected. Such mutants were found to lack the fermentative coenzyme A (CoA) linked acetaldehyde dehydrogenase activity. Most also lacked the associated fermentative enzyme alcohol dehydrogenase. Both types of mutants, those lacking acetaldehyde dehydrogenase alone or lacking both enzymes, mapped close to the regulatory adhC gene at 27 min on the E. coli genetic map. The previously described acd mutants which lack acetaldehyde dehydrogenase and which map at 63 min were shown to be pleiotropic, affecting respiration and growth on a variety of substrates. It therefore seems likely that the structural genes for both the acetaldehyde and alcohol dehydrogenases lie in the adhCE operon. This interpretation was confirmed by the isolation of temperature sensitive chloracetaldehyde-resistant mutants, some of which produced thermolabile acetaldehyde dehydrogenase and alcohol dehydrogenase and were also found to map at the adh locus. Reversion analysis indicated that mutants lacking one or both enzymes carried single mutations. The gene order in the adh region was determined by three point crosses to be trp - zch:: Tn10 - adh - galU- bglY - tyrT - chlC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5117
    Keywords: 14C uptake ; 14C loss ; productivity ; assimilation number ; oligotrophic water ; phytoplankton ; bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Measurements of the uptake and loss of 4C in the light and in the dark in the Tasman and Coral Seas have revealed methodological problems with the estimation of productivity in these waters. Rates of productivity estimated without replication, time series incubations and dark controls frequently overestimated the true rates of autotrophic production. The data showed unexpectedly high rates of both uptake and loss in the dark in oligotrophic waters. In oligotrophic oceanic waters, dark incorporation of 14C sometimes equalled the uptake of 14C in the light bottle. Rapid uptake of isotope in the dark controls appeared to be the result of rapid bacterial growth and metabolism. This problem was exacerbated by agitation of the sample before or during the incubation. Tropical samples were particularly susceptible to problems arising from the agitation of the samples. Latitudinal gradients of dark uptake and loss were revealed in these incubations. The loss of label during 8–12 hours in the dark (after 12 hr in the light) was as high as 50% in subtropical waters. The loss was frequently unmeasurable (〈 10%) in temperate waters. The time course of 14C uptake indicated active grazing in the bottles and suggested that most of the nighttime losses of label were due to grazing by microheterotrophs. Respiratory losses appeared to be small. Calculated values of the assimilation number (or photosynthetic capacity) which did not correct for dark 14C uptake were too high to be biochemically realistic. The errors were due to the heterotrophic uptake of label and the lack of dark controls. Rapid release of 14C in the dark after incubation in the light meant that the estimate of ‘productivity’ was dependant on the trophic state of the sample and on the period of incubation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...