Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
  • Fermentation  (2)
  • 3-phosphate synthase (EPSPS)  (1)
  • 52.80  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Alcohol dehydrogenase ; Fermentation ; Flooding tolerance ; Marsh plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of this work was to discover whether oxygen tensions in the roots of marsh plants in flooded soils are high enough to allow fully acrobic metabolism. Activity of alcohol dehydrogenase (ADH), a protein synthesised in anoxic plants, was measured in roots of marsh plants growing in habitats where the availability of oxygen to the roots would be expected to differ. Roots of Carex riparia in standing water had ADH activities about 2.5 times higher than those of phosphofructokinase, and comparable to ADH activities of Poa trivialis, Urtica dioica and Ranunculus repens roots in dry soil. Removal of the oxygen supply via aerenchyma to Carex roots caused a 30-fold increase in ADH activity relative to that of phosphofructokinase. There was no change in ADH activity with depth in Carex roots in waterlogged soil, but in Filipendula ulmaria roots activity was 14 times higher below 10 cm depth than near the surface. Urtica roots in waterlogged soil had alcohol dehydrogenase activities 26 times higher than roots in dry soil, but for Poa and Ranunculus roots this figure was only 1.7 and 4.2, respectively. These results indicate that the oxygen tensions in the roots of marsh plants in waterlogged soil differ considerably among species. Ethanol was the major product of fermentation in roots of all species studied. There was no correlation between ADH activity and the rate of ethanol production under anoxia of Urtica roots. The physiological significance of high ADH activities in roots is thus unclear.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 166 (1985), S. 264-270 
    ISSN: 1432-2048
    Keywords: Fermentation ; Nodule ; Phosphoenolpyruvate carboxylase ; Pisum (fermentation) ; Rhizobium ; Root (fermentation)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of this work was to compare the capacities for fermentation and synthesis of malate from phosphoenolpyruvate in roots and Rhizobium nodules of Pisum sativum. The nodules and the cortices and apices of roots had similar activities of glycolytic enzymes and enzymes of ethanolic and lactic fermentation when expressed on a protein basis. The activity of phosphoenolpyruvate carboxylase was similar in nodules and apices, and three to four fold lower in cortices. All three tissues had very high activities of malate dehydrogenase, significant activity of NADP-malic enzyme, and no detectable activity of phosphoenolpyruvate carboxykinase. These results do not support the belief that nodules have a substantially greater capacity to convert phosphoenolpyruvate to malate than roots, or that there are major qualitative differences in the pathways of fermentation of nodules and roots.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 37 (1985), S. 219-221 
    ISSN: 1432-0649
    Keywords: 42.55D ; 33.80E ; 52.80 ; 42.60B
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A short pulse (100 ns) high-energy x-ray source has been used to preionize a transversely excited carbon dioxide gas discharge laser of 600 cm3 active volume. The maximum output power of 60 MW in a 50 ns FWHM pulse was achieved from a CO2−N2−He−CO−Xe static gas mixture at 600 Torr pressure. The energy conversion efficiency was 6%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Keywords: Gen amplification ; Glyphosate resistance ; 5-enolpyruvylshikimic acid ; 3-phosphate synthase (EPSPS) ; Protoplast fusion ; Amino acid analogs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A Daucus carota cell line selected as resistant to N-(phosphonomethyl)-glycine (glyphosate) was found to have increased levels of 5-enolpyruvylshikimic acid-3-phosphate synthase (EPSPS) activity of 5.5 times over wild-type carrot and an EPSPS protein level increase of 8.7 times as confirmed by Western hybridization analysis. Southern blot hybridization using a petunia EPSPS probe showed increases in the number of copies of EPSPS genes in the glyphosate-resistant line which correlated with the higher levels of the EPSPS enzyme. The mechanism of resistance to glyphosate is therefore due to amplification of the EPSPS gene. To examine the stability of the amplified genes, cloned lines selected as doubly resistant to Dl-5-methyltryptophan (5MT) and azetidine-2-carboxylate (A2C) were fused with the amplified EPSPS glyphosate-resistant cell line. Somatic hybrids expressed resistances to 5MT in a semidominant fashion while A2C and glyphosate resistance was expressed as dominant, or semi-dominant traits, in a line-specific manner. The hybrid lines possessed additive chromosome numbers of the parental lines used and no double minute chromosomes were observed. The glyphosate-resistant parental line and most somatic hybrids retained the amplified levels of EPSPS in the absence of selection pressure over a 3-year period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...