Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Salivary gland ; Non-electrolyte permeability ; Reflection coefficient ; Acetylcholine ; Forskolin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Previous studies have suggested that the permeability of exocrine glands to non-electrolytes may change according to the nature and intensity of the stimuli evoking secretion. The purpose of this study was to define the nature of these permeability changes using a method that distinguishes diffusion from solvent drag. Isolated rabbit mandibular salivary glands were perfused with solutions containing14C-labelled non-electrolytes and stimulated with acetylcholine. Diffusive permeability coefficients (P) and solvent-drag filtration coefficients (1-σ) were estimated from the relationship between salivary non-electrolyte concentration and salivary flow rate. Filtration coefficients for urea, ethanediol, glycerol, erythritol and sucrose increased with acetylcholine concentration while, with the exception of urea, the diffusive permeabilities remained virtually unchanged. The effect of increasing acetylcholine concentration can best be explained by postulating an increase in the effective channel radius of the water secretion pathway from 0.40 nm to 0.45 nm together with a small increase in the fraction of the total water flow passing through larger non-selective pores. Forskolin had little effect on either of the permeability parameters except for a small increase in the diffusive permeability to ethanediol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Salivary gland ; Intracellular pH ; 31P NMR spectroscopy ; Acetylcholine ; Amiloride ; DIDS ; Na+−H+ exchange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Intracellular pH (pHi) was measured in the isolated, perfused rabbit mandibular salivary gland by31P NMR spectroscopy. In the unstimulated gland perfused with HCO 3 − /CO2-buffered Ringer's solution, pHi was 7.27±0.01. Continuous stimulation with acetylcholine elicited dose- and time-dependent changes in pHi. 10−6 mol/l acetylcholine caused a brief intracellular acidosis (−0.19±0.06 pH units) followed by an increase in pHi to a more alkaline steady-state value (7.33±0.02). In the absence of perfusate HCO 3 − or in the presence of 10−4 mol/l DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid), the transient acidosis was abolished and pHi increased rapidly to give a sustained alkalosis (7.49±0.03 and 7.44±0.03 respectively). In the presence of 10−3 mol/l amiloride, the response to acetylcholine was a rapid decrease in pHi to 7.02±0.02. The data suggest that, during perfusion with HCO 3 − /CO2-buffered solutions, stimulation with acetylcholine results in a transient loss of HCO 3 − from the acinar cells (causing a transient acidosis), and, independently, the activation of Na+−H+ exchange (causing a sustained alkalosis). In the unstimulated gland, DIDS and the HCO 3 − -free perfusate caused decreases in pHi to 7.12±0.02 and 7.04±0.01 respectively. In contrast, amiloride had little effect. The relatively high value of pHi maintained by the unstimulated gland is therefore probably not due to Na+−H+ exchange.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...