Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Tryptophan ; Aggressive behavior ; Motor activity ; Social isolation ; Dopamine ; Serotonin ; Tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This study examined the interaction of dietary tryptophan (TRP) and differential housing on territorial-induced aggression, locomotor activity, and monoamine neurochemistry in mice. Groups of male CF-1 mice were singly-housed or group-housed and administered a semisynthetic basal diet supplemented with TRP (0.25–1.0%). Behavioral measures were taken at various intervals up to 2 weeks after dietary administration was instituted. Separate groups of mice were given the same experimental treatment and sacrificed for whole brain determination of the monoamines and their metabolites. Isolated mice were consistently more aggressive than grouped animals, suggesting that territorial-induced aggression is synergistic with intermale aggression based on social isolation. The combination of isolation and 0.50% TRP was particularly effective in producing increases in aggression that reached maximal levels after 10 days of diet administration. However, motor activity of singly-housed mice was unaffected by TRP, while that of grouped mice was decreased after 5 days of 0.50% TRP. By day 14 of administration behavioral changes tended to return to baseline levels. Neurochemical measures indicated increased DA and 5-HT turnover in isolated mice, with the 5-HT system most affected by dietary TRP. Because housing conditions were a prominent factor in the aggression and neurochemistry, the results suggest the involvement of both transmitter systems in this behavior. However, there were no changes in monoamine turnover that could account for the development of behavioral tolerance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Gamete Research 11 (1985), S. 83-97 
    ISSN: 0148-7280
    Keywords: oocyte maturation ; follicular fluid ; mouse ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The effects of the putative maturation inhibitor in porcine follicular fluid on gonadotropinstimulated reversal of cyclic adenosine monophosphate (cAMP)-maintained meiotic arrest in mouse oocytes in vitro were assessed in this study. When cumulus cell-enclosed oocytes were cultured in a suboptimal inhibitory concentration of dibutyryl cAMP (dbcAMP), the effect of follicle-stimulating hormone (FSH) on oocyte maturation was initially inhibitory at 3 hr, but stimulatory at 6 hr. Supplementation of the medium with an ultrafiltrate of porcine follicuiar fluid (PM10-filtrate) completely suppressed FSH-promoted reversal of inhibition at 6 hr. Charcoal extraction eliminated this effect of the PM10-filtrate. FSH reversed the inhibition of maturation of cumulus cell-enclosed oocytes maintained by a high concentration of dbcAMP and suboptimal concentrations of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl xanthine (IBMX), during a 21-22-hr culture period. However, the effect of a completely inhibitory concentration of IBMX was not reversed by gonadotropin. A component of serum was also found to inhibit FSH reversal of dbcAMP-maintained meiotic arrest, and this activity was removed by charcoal extraction. In addition, when oocytes were cultured in medium containing a suboptimal concentration of dbcAMP plus a low molecular weight fraction (〈 1,000) of porcine follicular fluid, porcine serum, or fetal bovine serum, a synergistic inhibition of maturation was observed. Experiments with highly purified gonadotropins revealed that reversal of dbcAMP-maintained meiotic arrest occurred only in response to FSH; neither highly purified luteinizing hormone nor human chorionic gonadotropin could mimic this action of FSH. Also, this effect was mediated by the cumulus cells, since FSH could not reverse dbcAMP-maintained meiotic arrest in denuded oocytes. Furthermore, elevating cAMP levels in denuded oocytes augmented, rather than reversed, the inhibitory action of dbcAMP on oocyte maturation. These data therefore suggest that dbcAMP- or IBMX-maintained meiotic arrest in vitro is reversed by an FSH-stimulated, cAMP-dependent process mediated by the cumulus cells and demonstrate that a factor present both in follicular fluid and serum prevents this action of the gonadotropin.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0148-7280
    Keywords: mouse ; oogenesis ; oocyte maturation ; cyclic adenosine monophosphate ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The cyclic adenosine monophosphate (cAMP) content of intact oocyte-cumulus cell complexes at various times after the induction of oocyte maturation in mice in vivo was correlated with the time of commitment by the oocytes to undergo germinal vesicle breakdown (GVB) and metabolic coupling between the oocyte and cumulus cells. Seventy-nine percent of the oocytes either underwent GVB or were committed to do so by 2 h after injection of human chorionic gonadotropin (hCG). This occurred without a decrease in the coupling between cumulus cells and the oocyte and with increasing cAMP levels in the oocyte-cumulus cell complex. Maintenance of threshold levels of cAMP within mammalian oocytes appears essential for the maintenance of meiotic arrest, but data presented here suggest that oocyte maturation in mice is induced by gonadotropins in nonatretic follicles in vivo by some mechanism other than one which decreases the cAMP content of the intact oocyte-cumulus cell complex.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...