Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 403 (1985), S. 337-343 
    ISSN: 1432-2013
    Keywords: Shunt pathway ; Diuretics ; Sodium transport chloride conductance ; Amphibian skin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Indacrinone, a drug chemically related to ethacrynic acid, usually stimulated reversibly short circuit current and sodium influx when applied to the epithelial surface of amphibian skin. Concomitantly, transepithelial conductance,g t, decreased, provided chloride was the main anion in the incubation fluid. Electrophysiological analysis including microelectrode impalement indicated that the drug increased the sodium-conductance at the apical border of the impaled (most likely granular) cells. The decrease ing t thus points at shunt conductance being reduced with indacrinone, sometimes drastically. Decrease of transepithelial chloride flux with the drug as well as lack of effect of the drug ong t in the absence of chloride on the epithelial side demonstrate the influence of indacrinone on a chloride specific pathway. Whether this is along a paracellular route or through a cellular compartment not coupled to granular cells (mitochondria-rich cells?) cannot be decided on the basis of the present data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 411 (1988), S. 386-393 
    ISSN: 1432-2013
    Keywords: Chloride conductance ; Sodium permeability ; Mitochondria-rich cells ; Amphibian skin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Procaine, a tertiary amine, has previously been shown to stimulate reversibly transepithelial Na transport across frog skin after application from the epithelial side. In the present study with intracellular recording from principal, i.e. amiloride-sensitive cells, we demonstrate that the stimulation results from increase in apical membrane Na permeability. A second effect of procaine (10–25 mmol/l) in the outside perfusion solution is a reversible increase of transepithelial conductance which drastically exceeds the predicted response of the transcellular Na pathway. It requires presence of chloride on the epithelial side and depends on the non-ionized molecule of procaine. Abolition of apical membrane Na uptake by amiloride or Na-free mucosal inbubation decreases the magnitude but does not prevent the stimulatory effect of procaine. The origin of this gain in conductance from stimulation of a Cl-specific pathway is demonstrated by a highly significant correlation between the increases in electrically determined tissue conductance and partial Cl conductance, obtained from measurements of influx and efflux of Cl-36. Measurements with microelectrodes indicate that the stimulated Cl-specific pathway is distinct from the principal cells. Since procaine activates a conductive pathway with similar response pattern as spontaneously existing Cl conductance, it might be a valuable tool for investigating mode and way of Cl movement across epithelial tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 412 (1988), S. 305-313 
    ISSN: 1432-2013
    Keywords: Amphibian skin ; Anion transport ; Cl conductance-Electron microprobe analysis ; Cellular electrolyte concentrations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To elucidate the route of transepithelial Cl transport across amphibian skins, electrolyte concentrations and uptake of Br in different epithelial cell types of toad skin were determined using electron microprobe analysis. Under short-circuited conditions, Cl concentrations were about 10 mmol/kg ww lower in MR-cells (23.9±9.6 mmol/kg ww) than in principal cells and showed a large scatter. After unitateral substitution of Br for Cl in the bathing solutions, principal cells exchanged Br for Cl only from the serosal side, whereas variable amounts of Br were gained in MR-cells from either side. The ratio of Br to Cl concentrations in MR-cells averaged 0.35 and 0.81 after incubation with NaBr-Ringer's on the apical or serosal side, respectively. After activation of transepithelial anion conductance by serosa-positive voltage-clamping to 100 mV, uptake of Br from the apical side was increased in MR-cells compared with short-circuited conditions. On the average, the ratio of cellular Br to Cl concentrations was 1.38, but the variation among individual MR-cells from the same tissue was considerable. In MR-cells with large uptake of Br and voltageactivated conditions, the sum of Br and Cl concentrations was higher than the Cl concentration under control conditions. The increase of anion content was associated by increase of the Na and corresponding decrease of the K concentrations. The MR-cells were swollen as indicated by the decrease in the cellular dry weight content from 22.2±2.5 to 17.1±4.2 g/100 g. The principal cells contained 3.5±2.6 mmol/kg ww Br after voltage activation of anion conductance which appears to be taken up from the lateral intercellular spaces across the basolateral membrane. The data indicate that principal cells are not involved in transepithelial Cl transport. The MR-cells, although representing a heterogeneous cell population, might be a site for electrodiffusional transepithelial Cl movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...