Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • CO2 reduction to acetate  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 144 (1986), S. 386-392 
    ISSN: 1432-072X
    Keywords: CO formation from CO2 ; CO2 reduction to acetate ; Actetate formation from CO and formaldehyde ; Carbon monoxide oxidation ; Acetobacterium woodii ; Proton motive force ; ATP synthesis ; Amino acid transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cell suspensions of Acetobacterium woodii produced CO from H2 and CO2. Depending on the conditions, more than 1,000 ppm CO were measured in the gas phase. This concentration was more than 10-fold higher than the thermodynamic equilibrium concentration that can be calculated to be 83.5 ppm for the experimental conditions used. This finding is taken as evidence that, besides the activation of formate, also CO production from CO2 is an energy-dependent step in the reduction of CO2 to acetate. Studies on the influence of ionophores and dicyclohexylcarbodiimide (DCCD) as well as that of CO and formaldehyde on acetate synthesis were undertaken in order to determine whether ATP or $$\Delta \tilde \mu _H $$ is the driving for CO2 reduction to CO. Cells of A. woodii also catalyzed the conversion of CO (5% in the gas phase) to CO2 and H2. This process was coupled to the generation of metabolic energy, which could be used by the cells to drive the uptake of histidine into the cells; histidine uptake was almost completely inhibited by the ionophores valinomycin plus nigericin. The data were taken to indicate that in this acetogen the energy derived from CO oxidation can be converted to metabolic energy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...