Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 583-591 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An analytical methodology was developed capable of describing interrelations between thermal processing and polymer structure for thermoplastic based composite laminates. Specifically, this modeling methodology was used to describe experimental results generated with a specially designed match die quench mold by processing both neat PEEK polymer and carbon fiber reinforced laminate samples at different cooling rates. The developed model accurately predicted temperature profiles for PEEK laminates of different thicknesses, under normal as well as extreme quenching conditions of 114°C/s. surface cooling rates that are possible to generate with the quench mold. In general, the modeling methodology is capable of predicting a part's thermal profile during processing in terms of the composite's microscopic intrinsic properties (fiber and matrix), composition, and lamina orientation. Furthermore, by coupling to the thermal profile description, a previously developed crystallization kinetics model for PEEK polymer and its carbon reinforced composite, a quantitative description of structural development during processing was obtained. Thus, with this analytical methodology, a skin-core crystallinity profile, where the crystallinity varies with part-thickness as a result of uneven cooling experienced during processing, was predicted both for the neat PEEK polymer and its carbon reinforced laminate forms. Finally, the developed methodology clearly established the interplay of both microscopic heat transfer and kinetics of crystallization/solidification of the matrix that must be accounted for in predicting the final structure of a carbon fiber reinforced laminate that will, in turn, govern microscopic and macroscopic performance.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 634-639 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Neat poly(ether-ether-ketone) (PEEK) and carbon fiber reinforced PEEK (APC-2) specimens were prepared using a variety of cooling rates to achieve a range of crystallinities. Amorphous specimens were exposed to a variety of fluids to determine the penetrant types which are able to strongly influence the material. This allowed the estimation of the solubility parameter and hydrogen bonding index for PEEK to be 9.5 and 3.1, respectively. Methylene chloride was used to investigate the kinetics of penetrant sorption. The data demonstrated Case II behavior, with the initial crystallinity having a pronounced effect on both the kinetic and equilibrium data. Accordingly, a model was proposed capable of describing the sorption level and penetration depth as a function of time given the sample crystallinity and sorption temperature. With Case II behavior there was no difference in the sorption kinetics of neat and fiber reinforced PEEK. Finally, the dynamic mechanical properties measured during sorption were found to be dependent on the sorption process.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 1053-1054 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 29 (1989), S. 315-324 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Using dielectric techniques to monitor thermoset properties on-line during processing requires a mathematical relationship between the experimentally obtained signals and the physical state of the polymer. Such a relationship accounting for the dielectric response during both isothermal and dynamic cure experiments is developed in this study. Ionic conductivity changes with cure were described using the Keinle-Race expression, while an approach taken by Lane, Bachmann, and Seferis for modeling dipolar relaxation during isothermal cure was extended to nonisothermal cure conditions. Both of these approaches were combined in this study, providing a complete description of the dielectric changes occurring in thermosetting systems resulting from cure. Experimental results for a model epoxy/amine system were predicted with the developed methodology for isothermal cure at 140°C, 150°C, 160°C, and 170°C and cure under dynamic heating conditions at 1°C per minute.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 29 (1989), S. 937-941 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Polyamic acids synthesized from di-trifluoromethyl methane bis(phthalic anhydride) and 4,4'-diaminophyenyl sulfone (F-1) and 4,4'-diaminophenyl ether (F-4) were found to have excellent negative E-beam resist properties. The best materials contain about 90 percent imidized structural units having sensitivities of 1.5 to 2.5 μC cm-2 and contrast of 1.0 to 1.3. Polyamic acid of pyromellitic dianhydride and 4,4'-diaminophenyl sulfone (P-1) imidized to 97 percent exhibits useful positive E-beam resist properties. Radiation induces imidization and chain scission to alter the solubility of the resist polymers resulting in the formation of latent images.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 25 (1985), S. 635-642 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The kinetics of acetylene polymerization have been studied as a function of monomer pressure, catalyst aging and concentration, Al/Ti ratio, and temperature. The rate constants of chain propagation and termination and their activation energies have been determined, The Mn of polyacetylene has been obtained using a radioquenching technique, and was found to vary from 500 to 250,000. Wide angle X-ray diffraction showed the polymer to be highly crystalline but the crystallites are disordered. The crystal structures of cis and trans polyacetylene have been obtained from the fiber electron diffraction patterns. The c-axis is the polymer chain axis which is along the fiber axis. The basic morphological entity is the microfibrils of 2 to 3 nm diameter which aggregate to form 20 to 30 nm fibrils.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 26 (1986), S. 346-353 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Dielectric data from an epoxy resin system were used as the foundation for dielectric modeling of the curing process. This resin system (DGEBA-polyamide) was chosen as an easily processible model system. Dielectric average relaxation times, defined as the reciprocal of the angular frequency at which the loss component of the dielectric constant reaches a maximum, were determined for a 40°C isothermal cure. The changes in the average relaxation time through the cure exhibited similar behavior to those for viscosity, which inspired the correlation of the two properties. The dielectric relaxation time was modeled using a six-parameter model analogous to that used for viscosity. The model parameters were in turn associated with both intrinsic properties of the system and reaction kinetics describing the cure. The possibility of extending the relaxation time model for use with single-frequency data by means of a time-frequency correlation was also investigated. Combined, these two modeling methodologies provide a powerful constitutive approach for describing dielectric properties of thermosetting polymers during cure.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 26 (1986), S. 1574-1581 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Differential scanning calorimetry (DSC) and the density gradient technique (DGT) were used to determine, both isothermally and dynamically, the crystallization kinetics of polyetheretherketone (PEEK). The data were analyzed by a model utilizing, for the first time, two crystal nucleation and growth processes which were observed experimentally in a typical Avrami plot of the isothermal data. Thus, by modeling the data as two separate Avrami type crystallization processes occurring in parallel, both isothermal and dynamic data could be predicted with the same model constants. The first process provided an Avrami exponent of 2.5 and an onset temperature of 320°C. The second process displayed an Avrami exponent of 1.5 and an onset temperature of 342°C. The validity of this dual mechanism crystallization model was proven in practice by predicting with best fit model constants, a wide range of crystallinities of both neat and carbon fiber-reinforced PEEK samples that had been made at different cooling rates from the melt.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 25 (1985), S. 834-840 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Segmented poly(ether-b-urethanes) have been synthesized with 2000 MW polypropylene oxide coupled with diisocyanates and diol type chain extenders. The diisocyanates used were symmetric rigid 4, 4′-diphenylmethane diisocyanate (MDI), linear aliphatic hexamethylene diisocyanate (HDI), and unsymmetric rigid toluene-2, 4-diisocyanate (TDI). The chain extenders were symmetric N, N′-bis(2-hydroxyethyl) terephthalamide (BT) and N, N′-bis(2-hydroxyethyl)-hydroquinone (BH) unsymmetric N, N′-bis(2-hydroxyethyl)isophthalamide, and linear aliphatic 1, 4-butanediol (B). Hard segment contents ranged from 20 to 40 wt percent. The thermal behavior of these materials is consistent with phase separation into separate hard and soft domains, In order of increasing temperature above the soft segment Tg, there are transitions which occur in the regions -56 to -36°C (Ta), 70 to 90°C (Tb), and 138 to 168°C (Tm). The former is probably associated with soft segment change from a viscoelastic to an elastomeric state. Values of Ta are ∼ -51 C and -56°C for the MDI-BT and HDI-BT polymers, respectively, and are independent of hard segment content. Microscopy showed that the former polymers have spherulitic morphology, so these materials have good microphase separation and exhibit crosslinked elastomeric properties. The TDI-BT or BI and MDI-B polyurethane have composition-independent Ta values of -41 and -36°C, respectively. These materials probably have considerable “domain-bound-ary-mixing”. At low hard segment content the MDI-B polymers behave as non-crosslinked elastomers. Only the MDI-BI polymers have Ta values, which are strongly affected by composition, increasing in magnitude with increasing of hard segment content. This is interpreted as significant “mixing-in-domains” and is supported by morphology observed by microscopy. The next higher transition, Tb, probably involves dissociation of interdomain hydrogen bonding. In the case of the MDI-BT polyurethanes, the spherulites associated with the hard domains had disappeared at 141°C and the few small spherulites in the MDI-BI polymers disappeared at 130°C. The Tb values are 70, 83 to 90, and 100°C for the MDI-B, HDI-BT, and HDI-BI polymers, respectively. The melting transitions occurred between 138 to 168°C for the various polyurethanes except for the MDI-BT systems which decompose before melting. Thermal decomposition is a two-stage process. Hard segments decompose between 200 and 300°C. The initial decomposition temperatures are lowered in the presence of strong acid. Soft segments decompose at higher temperatures. The mechanical properties of the MDI-BI polyurethanes are charateristic of crosslinked elastomer, the results of which will be presented in a subsequent paper.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 553-553 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...