Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (7)
  • Chemistry  (7)
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Die Makromolekulare Chemie 15 (1989), S. 137-145 
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We compare the ultimate mechanical properties and glass transition temperatures of various polyblends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(dimethylsiloxane) (PDMS) including full and pseudo interpenetrating polymer networks (IPN), in which the PPO is crosslinked to different extent with both ethylenediamine and 1,6-hexanediamine. Most of the polyblends of this system exhibit at least microphase separation with domain size varying with both composition and architecture. The full IPN's have at certain compositions a higher tensile stress to break than the crosslinked pure polymer networks. Most polyblends also exhibit multiple glass transition temperatures.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 27 (1989), S. 285-287 
    ISSN: 0887-6258
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 24 (1986), S. 2297-2309 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The synthesis of crosslinked polydiacetylene [poly4ECMU (a polydiacetylene with ethoxy carbonyl methylene urethane substitution): where R = —(CH2)4OCONHCH2COOCH2CH3] was carried out utilizing its polar and flexible substituent groups. Polydiacetylene was crosslinked by the formation of allophanate linkages utilizing urethane groups in the substituent groups of the polydiacetylene. Two-component IPNs of polydiacetylene [poly4BCMU (a polydiacetylene with butoxy carbonyl methylene urethane substitution): where R = —(CH2)4OCONHCH2COO(CH2)3CH3] and an epoxy resin (diglycidyl ether of Bisphenol A) were synthesized. Two-component IPNs of poly4ECMU with the above epoxy resin were also synthesized. For the first time, two-component stiff-backbone IPNs of two different kinds of polydiacetylene (poly4BCMU and polyECMU) and a three-component IPN of poly4BCMU, poly4ECMU, and the epoxy resin were synthesized. IPNs with fewer allophanate linkages were also made in order to examine morphological differences between them. The glass transition behavior of these networks was studied using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) by means of a Rheovibron.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 27 (1989), S. 3363-3370 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Simultaneous full and pseudo- interpenetrating polymer networks of poly(2,6-dimethyl-1,4 phenylene oxide) (PPO) and a poly(urethane acrylate) (PUA) have been synthesized and characterized by differential scanning calorimetry, ultimate mechanical properties, and electron microscopy. No evidence of phase separation was detected in both the full and pseudo- PPO/PUA networks. The networks exhibited a single glass transition temperature at all the compositions studied. A maximum in tensile strength to break was observed at 25 PPO/75 PUA composition by weight percent.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 26 (1988), S. 2589-2596 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The synthesis and characterization of pseudo or semi- and full-interpenetrating polymer networks (IPNs) of poly(2,6-dimethyl-1,4-phenylene oxide) and polydimethylsiloxane were performed. We observed that in full IPNs, the elasticity of the IPN samples increased very drastically, as the composition of polydimethylsiloxane increased (i.e. 0-60%) while the tensile strength (TS) and the glass transition temperature (Tg) decreases. The pseudo IPNs appeared to consist of two phases while the full IPNs of lower siloxane content were miscible.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 28 (1989), S. 1413-1427 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The electrophoretic mobility of restriction fragments of lambda DNA in agarose gels declines if the field is intermittent rather than continuous, with a greater effect on the longer fragments. The changes are compatible with the assumption of two exponential relaxation processes for field-dependent configurational changes, one when the field is turned on and another when it terminates. The length dependence at the extrapolated limit of mobility for short pulses with long intervals corresponds closely to the simple inverse proportionality to length expected from theoretical considerations when the molecular configuration is not affected by the electric field. Simple intermittent fields would allow separation of longer molecules than can ordinarily be resolved. The relaxation times for both the change in conformation imposed by the field and the return to field-free conformation vary as approximately the second power of the length of the molecule, independent of the salt concentration or field strength and varying only slightly with gel density. These relations are not in good agreement with properties expected from reptation theory, and they suggest that a different mechanism must be invoked for the electrophoretic migration of long DNA molecules at ordinary values of field strength.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 10 (1989), S. 442-446 
    ISSN: 0173-0835
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: This paper describes an attempt to study the electrophoresis mobility of a DNA molecule in a gel by means of a Monte Carlo simulation. We find that the electrophoresis mobility μ can be well described by the empirical equation μ = κ1/N + κ2E2 with N being the number of monomers of the model chain and E being the applied field. For small E the data can merge into the linear response result μ = κ1/N. The paper also discusses necessary extensions of the present approach.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...