Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
  • Polymer and Materials Science  (4)
  • Endogenous depression
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 27 (1989), S. 3187-3199 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Previous attempts to prepare monodisperse styrene/sodium styrene sulfonate copolymer latexes by batch, seeded, and semicontinuous emulsion polymerization were unsuccessful at high concentrations of the functional comonomer. Broad, and sometimes bimodal, size distributions, and large amounts of water soluble homopolymer were obtained. After removal of free monomer, solute and adsorbed homopolymer and copolymer, the overall incorporation of the functional comonomer was found to be low. To overcome these problems, a two stage “shot-growth” or in situ seeding technique was developed. A first stage copolymerization was carried out with a low concentration of sodium styrene sulfonate: the purpose of the functional comonomer was to enhance the stability and regulate the size of the seed particles. When this reaction had reached high conversion (〉 90%), a second stage monomer mixture was added. The ratio of styrene to sodium styrene sulfonate in this mixture determined the final surface charge density. The mechanism by which the NaSS is incorporated in the polymer particles is considered to be by solution copolymerization with solute styrene monomer to form surface active oligoradicals. These radicals adsorb on the particle surface, initiate polymerization and become inextricably bound, preventing their transfer back to the aqueous phase. By this means, it was possible to vary independently the particle size and surface charge density. High concentrations of functional comonomer could be polymerized without undue wastage (incorporations were only slightly less than 100%) or loss of monodispersity. In extreme cases, the area per functional group fell below the theoretical minimum, indicating considerable hydration of the surface layers.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 35 (1988), S. 2117-2131 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Sulfonated polystyrene latex particles were used as acid catalysts in the continuous inversion of sucrose at 50-70°C. The particles (surface charge 168 μeq/g) were confined in a stirred reactor with a semipermeable membrane; sucrose solution was pumped in, and product solution was pumped out. The catalytic activity of the particles was unchanged after 20 days continuous use. Variation of particle size (0.13 and 0.42 μm) and stirring rate showed that internal and external mass transfer was not a controlling factor. The kinetics were pseudo-first-order; the rate constant at 70°C was 2.30/N min as compared with 0.07/N min for macroporous sulfonated ion-exchange resin; the apparent activation energy was 111 kJ/mol as compared with 121 kJ/mol for the homogeneous acid-catalyzed reaction. The faster rate was attributed to the very great surface area, high charge density, and lack of internal diffusional resistance of the latex particles. The proposed mechanism comprised adsorption of sucrose on the particle surface, followed by inversion and desorption of product.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 27 (1989), S. 2211-2227 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Poly(vinyl chloride) (PVC) is shown to be miscible with styrene/acrylonitrile copolymers (SAN) having AN compositions from 11.5 to 26%. Blend samples were prepared using several methods, including solution casting, melt mixing, and precipitation of solutions by a nonsolvent. It is shown that the blend phase behavior is affected by preparation method due to the solvent effect, or Δχ effect, and lower critical solution temperature (LCST) behavior. The intramolecular repulsion between styrene and acrylonitrile units in SAN is shown to be the cause of miscibility using heats of mixing obtained from low-molecular-weight analog compounds. An FTIR analysis supplements the above results.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 27 (1989), S. 223-244 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Styrene/maleic anhydride (SMA) and styrene/acrylonitrile (SAN) copolymers have previously been shown to form miscible blends when the MA and AN contents do not differ too greatly. It is shown here that this is the result of a weak exothermic interaction between the MA and AN units by measuring the heats of mixing for appropriate liquid analogs of the various monomer units. The region of copolymer compositions for miscibility of SMA-SAN blends is predicted from the Sanchez-Lacombe mixture theory using net interaction parameters calculated from the analog calorimetry results via a simple binary interaction model for copolymers. Lower critical solution temperature behavior was observed for blends of copolymers having compositions near the edge of the miscibility region. Various glass transition, volumetric, and FTIR results are discussed in terms of the interactions observed.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...