Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 128 (1988), S. 195-229 
    ISSN: 1420-9136
    Keywords: Finite difference ; scattering ; marine seismics ; Stoneley waves ; random heterogeneities ; incoherence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present finite difference forward models of elastic wave propagation through laterally heterogeneous upper oceanic crust. The finite difference formulation is a 2-D solution to the elastic wave equation for heterogeneous media and implicitly calculatesP andSV propagation, compressional to shear conversion, interference effects and interface phenomena. Random velocity perturbations with Gaussian and self-similar autocorrelation functions and different correlation lengths (a) are presented which show different characteristics of secondary scattering. Heterogeneities scatter primary energy into secondary body waves and secondary Stoneley waves along the water-solid interface. The presence of a water-solid interface in the model allows for the existence of secondary Stoneley waves which account for much of the seafloor ‘noise’ seen in the synthetic seismograms for the laterally heterogeneous models. ‘Random’ incoherent secondary scattering generally increases aska (wavenumber,k, and correlation length,a) approaches one. Deterministic secondary scattering from larger heterogeneities is the dominant effect in the models aska increases above one. Secondary scattering also shows up as incoherence in the primary traces of the seisograms when compared to the laterally homogeneous case. Cross-correlation analysis of the initialP-diving wave arrival shows that, in general, the correlation between traces decreases aska approaches one. Also, because many different wave types exist for these marine models, the correlation between traces is range dependent, even for the laterally homogeneous case.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...