Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1985-1989  (2)
  • Neuronal necrosis  (2)
  • Reperfusion
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Acta neuropathologica 67 (1985), S. 25-36 
    ISSN: 1432-0533
    Schlagwort(e): Hypoglycemia ; Hippocampus ; Neuronal necrosis ; Mitochondria ; Astrocyte ; Endothelial microvilli
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Part I of this paper has documented the evolution of dark neurons into acidophilic neurons in the superficial laminae as well as the reversion of dark neurons to normal neurons in the deep laminae of the cerebral cortex in hypoglycemic brain damage. The present study describes the temporal evolution of hypoglycemic brain damage in the hippocampus. The evolution of dark neurons to acidophilic neurons was confirmed in this brain region. Four additional problems were addressed: Firstly, delayed neuronal death was looked for, and was found to occur in areas of CA1 undergoing mild damage. However, it was not preceded by a morphological free interval, had ultrastructural characteristics distinct from delayed neuronal death in ischemia, and hence should be considered a distinct phenomenon. Secondly, the gradient in the density of neuronal necrosis in the rat hippocampal pyramidal cell band was exploited to test the hypothesis that a more severe insult causes a more rapid evolution of neuronal changes. This was found to be the case, with a temporal spectrum in the timing of neuronal death: Necrosis occurred already after 2 h medially in the sobiculum, and was delayed by up to several weeks laterally in CA1. Thirdly, the almost universal sparing of CA3 pyramidal neurons after 30 min hypoglycemic isoclectricity was exploited to address the question of whether reactive changes, which could with certainty be deemed reversible, occur in CA3. Mitochondrial injury was seen in these cells, and was found to be recoverable. No reactive changes of the type previously described following ischemic insults were observed. Fourthly, the astrocytic and vascular response of the tissue was studied. A sequence of astrocytic changes representing structural and probably metabolic activation of astrocytes was seen, consisting of morphological indices of increased turnover of cellular components. Capillaries demonstrated endothelial pits, vesicles, and prominent microvilli hours to days after recovery. The results demonstrate that, in the hippocampal gyrus as in other brain regions, hypoglycemic brain damage is distinct from ischemic brain damage and likely has a different pathogenesis.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Acta neuropathologica 67 (1985), S. 37-50 
    ISSN: 1432-0533
    Schlagwort(e): Hypoglycemia ; Cerebral damage ; Dark neurons ; Neuronal necrosis ; Caudate ; Putamen ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The caudate nucleus and putamen belong to the selectively vulnerable brain regions which incur neuronal damage in clinical and experimental settings of both hypoglycemia and ischemia. We have previously documented the density and distribution of the hypoglycemic damage in rat caudoputamen, but the evolution of the injury, i.e., the sequence of structural changes, has not been assessed. Therefore, in the present study we analyze the light and electron microscopic alterations in the caudoputamen of rats exposed to standardized, pure insults of severe hypoglycemia with isoelectric EEG for 10–60 min, or in rats which, following insults of 30 or 60 min, were allowed to recover for periods from 5 min to 6 months. The hypoglycemic insult produced severe nerve cell injury in the dorsolateral caudoputamen. Immediately after the insult abnormal light neurons with clearing of the peripheral cytoplasm were present. These cells disappeared early in the receovery period, as they do in the cerebral cortex. Dark neurons were also present, but unlike those in the cerebral cortex they did not appear until recovery was instituted. Their number increased for a couple of hours and they became acidophilic within 4–6 h. At this stage, electron microscopy revealed severe clumping of the nuclear chromatin and cytoplasm as well as incipient fragmentation of cell membranes, all these changes indicating an irreversible injury. Within 24 h flocculent densities appeared in the mitochondria and by day 2–3 of recovery the great majority of the medium-sized neurons had undergone karyorrhexis and cytorrhexis, their remnants being subsequently removed by macrophages. After some weeks only large and a few medium-sized neurons remained amidst reactive astrocytes and numerous macrophages. The delay in the appearance of dark, lethally injured medium-sized neurons until the recovery was instituted suggests an effect that does not become apparent until the substrate supply and energy production are restored. Furthermore, it pointt out again the selectivity of the hypoglycemic nerve cell injury with respect to the type (metabolic characteristics?) and topographic location of the neurons.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...