Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • Rice embryogenesis  (1)
  • Starch properties  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 78 (1989), S. 11-15 
    ISSN: 1432-2242
    Keywords: Developmental mutants ; Organ differentiation ; Rice embryogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Zygotes of rice (Oryza sativa L. cv Taichung 65) were treated with 1.0 mM solution of the chemical mutagen N-methyl-N-nitrosourea. Out of 1420 M2 lines, 28 single-locus recessive mutants on embryogenesis were identified. Among them, we analyzed 11 mutants in the present study, which differentiated the shoot (plumule) and/or root (radicle) with abnormality. Of the 11 mutants, two showed no shoot differentiation with normal root. On the other hand, we could not detect any mutant which exhibited a normal shoot without a root. This suggests that shoot and root are genetically controlled by different loci and that the alleles associated with shoot formation mutate more frequently than do those of the root. Five mutants showed aberrant morphology of shoot when both the shoot and root developed. One of them, odm 5 (organ differententiation mutant 5) was germinable, but produced many fine and twisted leaves. This mutant was, however, lethal at the early post-germination stage under the usual cultural conditions. In another mutant (odm 4), shoot differentiation seemed to be initiated at an arbitrary position, resulting in a very abnormal morphology of the shoot when the position fronted the endosperm. The other two mutants showed abnormal morphology of both the shoot and root. One (odm 11) of the remaining two mutants showed a wide variation of abnormalities including no organ differentiation, either shoot or root differentiation and the development of both shoot and root with abnormalities. The last one (odm 16) was unique. It had an embryo with normal shoot and root but the embryo size was only one-third to one-half of normal embryos in length. Of course, the shoot and root are also small but viable. Therefore, odm 16 is considered to be a mutant in the size regulation of the embryo. Although an allelism test has not yet been done, most of these mutants are probably non-allelic, as the phenotypic abnormality differs largely with each one. In rice, the shoot and root highly differentiate in contrast to dicotyledonous embryo. Accordingly, these developmental mutants are very useful materials for investigating the regulatory mechanism of gene expression in organ differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 69 (1985), S. 253-257 
    ISSN: 1432-2242
    Keywords: Oryza sativa L. ; Endosperm ; High amylose mutant ; Starch properties
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Five mutant lines of rice with increased amylose content in starch granules were identified among floury endosperm mutants. The amylose contents of the mutants ranged from 29.4% to 35.4% and were about twice as high as that of the normal counterpart. Starch properties of the high amylose mutants were analyzed by column chromatography, X-ray diffractometry, photopastegraphy and scanning electron microscopy. The high amylose mutants produced longer unit chains of amylopectin than those of the normal counterpart as well as an increased amount of amylose. A X-ray diffractogram of starch in the mutant was characterized by a type B pattern, while that in the normal counterpart showed a type A pattern which is typical for starches of common cereals. The temperatures at the initiation of gelatinization of the mutants were much higher than that for the normal counterpart. The endosperm cells of the mutant were loosely packed with irregular round-shaped starch granules, whereas those of the normal counterpart were densely packed with polyhedral starch granules. Judging from the results obtained, it was concluded that starch properties of the high amylose mutants of rice were similar to those of the amylose-extender (ae) mutant of maize.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...