Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 11 (1988), S. 473-481 
    ISSN: 1573-5028
    Keywords: bronze-1 gene ; gene structure ; sequence comparisons ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have sequenced genomic clones of two wild-type Bronze-1 (Bz1) alleles, and a cDNA clone from a third wild-type Bz1 allele from maize. Two overlapping transcripts initiate at least 250 bp apart. The first AUG codon after the shorter and more abundant transcript cap site(s) begins the longest open reading frame. The transcript is preceded by a putative TATA box, but not a recognizable CAAT box. The bz1 gene contains a single intron, and exhibits a strong bias for codons with the highest G+C content. Sequence polymorphisms among the Bz1 alleles include deletions/additions, a transposable element insertion, and single base pair substitutions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: C4 photosynthesis ; gene structure ; gene expression ; genetic variation ; silent substitution ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have determined the structure of the maize (Zea mays L. subsp.mays line B73) nuclear gene encoding the phosphoenolpyruvate (PEP) carboxylase isozyme involved in C4 photosynthesis. The gene is 5.3 kb long and has ten exons that range in size from 85 to 999 bp. The nine introns vary from 97 to 872 bp. The sequence of 663 bp of 5′-flanking and 205 bp of 3′-flanking DNA is reported along with the entire gene sequence. Several short repetitive sequences were found in the 5′-flanking DNA that have characteristics similar to elements important in the light regulation of pea genes encoding the small subunit of ribulose 1,5-bisphosphate carboxylase. In addition, some 5′-flanking sequence similarities were found in a comparison with other light-regulated genes from maize and wheat. The level of DNA sequence variation among different PEP carboxylase alleles is similar to the allelic variation observed for several other maize nuclear genes. The data suggest modern maize variaties have retained much of the genetic variation present in their ancestral forms. Finally, accumulation of transcripts encoding the PEP carboxylase isozyme involved in C4 photosynthesis is quite high in several structures besides leaves, including inner leaf sheaths, tassels and husks. This indicates that expression of this gene is not leaf-specific and may not necessarily be coupled to the development of Kranz anatomy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 13 (1989), S. 673-684 
    ISSN: 1573-5028
    Keywords: malate synthase ; gene structure ; glyoxylate cycle ; glyoxysomes ; Cucumis sativus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The complete sequences of a full-length cDNA clone and a genomic clone encoding the Cucumis sativus glyoxysomal enzyme malate synthase, have been determined. The sequences have enabled us to identify putative control regions at the 5′ end of the gene, three introns, and possible alternative polyadenylation sites at the 3′ end. The deduced amino acid sequence predicts a polypeptide of 64961 molecular weight, which has 48% identity with that of Escherichia coli. Comparison of the sequence of malate synthase from cucumber with that from E. coli and with other glyoxysomal and peroxisomal enzymes, shows that a conserved C-terminal tripeptide is a common feature of those enzymes imported into microbodies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...