Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 0009-2940
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Die C8H10-Kohlenwasserstoffe 1, 3, 4 und 6 wurden im statischen System thermolysiert, und die Arrhenius-Parameter wurden gemessen. Die Bildungswärmen wurden kalorimetrisch bestimmt. Aus diesen Daten läßt sich eine experimentelle Energiehyperfläche konstruieren, die folgende Merkmale aufweist: 1) Die Grundzustandsenergie von endo-1 ist um 8 kcal mol-1 höher als die von exo-4. 2) Der wichtigste Reaktionsweg ausgehend von endo-1 ist die formal verbotene [2σ + 2π]-Cycloaddition zu 3, deren Mechanismus diskutiert wird. 3) Obwohl die Aktivierungsenergien der Wege 4→6 und 4→3 gleich sind, verläft die Reaktion zu 6 aufgrund des größeren A-Faktors rascher. 4) Der Tetracyclus 3 thermolysiert gemäß dem Prinzip der mikroskopischen Reversibilität über exo-4 zu dem Dien 6.
    Notes: The C8H10 hydrocarbons 1, 3, 4, and 6 have been thermolyzed in a static system and the Arrhenius parameters have been obtained. Calorimetric measurements have been carried out to determine the heats of formation. From these data an experimental energy hypersurface is constructed which shows the following remarkable features: 1) The ground-state energy of endo-1 is higher than that of exo-4 by 8 kcal mol-1. 2) The predominant reaction pathway of endo-1 is the formally forbidden [2σ + 2π] cycloaddition to 3, the mechanism of which is discussed. 3) Although the activation energies of the routes 4→6 and 4→3 are the same, the reaction yielding 6 is faster due to a sizeably higher A factor. 4) The tetracycle 3 chooses the microscopic reverse pathway, i.e. its thermolysis proceeds via exo-4 to give the diene 6.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 19 (1987), S. 997-1013 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Following earlier room-temperature studies, gaseous mixtures of methyl cyclobutyl ketone (MCK) diluted in argon have been photolyzed at temperatures up to 205°C. Experiments have been carried out at a variety of pressures (up to ca. 2 atm) at wavelengths of 313 nm (steady state conditions) and 308 nm (pulsed photolysis). The results are consistent with a mechanism dominated by radical-radical reactions involving acetyl, methyl, and cyclobutyl radicals. Acetyl radical processes predominate at lower temperatures while methyl radical reactions are more important at high temperatures.The results are interpreted via kinetic modelling of a mechanism in which a key role is played by the acetyl radical decomposition reaction \documentclass{article}\pagestyle{empty}\begin{document}$$ ({\rm M} +)\,{\rm CH}_{\rm 3} {\rm CO}\mathop {\longrightarrow}\limits^{\rm 3} {\rm CH}_{\rm 3} + {\rm CO\, (+ M)} $$\end{document} Values for k3 have been obtained and its temperature and pressure dependence are fitted by RRKM theory and a weak-collisional activation model to yield \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm log(}k_3 ^\infty /{\rm s}^{ - 1}) = 13.3 - 17.5{\rm\, kcal\, mol}^{{\rm - 1}} /RT\ln 10 $$\end{document} This high-pressure limiting Arrhenius equation is consistent with other studies in the same temperature range, but is difficult to reconcile with higher temperature investigations.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...