Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 178 (1987), S. 204-213 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We have evaluated the distribution of mitochondria and acidic organelles using, respectively, the specific vital fluorescent dyes rhodamine 123 and acridine orange during preimplantation embryonic development in the mouse. Under conditions used to visualize organelles in living embryos, staining with either dye was found to have no effect on either the rate or extent of in vitro development of five- to eight-cell embryos up to the blastocyst stage. Mitochondria were randomly distributed throughout the cytoplasm and located around nuclei in blastomeres of uncompacted embryos. During compaction, mitochondria initially reorganized to the blastomere cortex; however, these organelles were later confined to the perinuclear region in the trophectoderm (TE) of expanded blastocysts. Acidic organelles were randomly distributed in the cytoplasm of uncompacted embryos, but following compaction, they were concentrated in cortical and perinuclear locations. Moreover, in TE cells of expanded blastocysts, acidic organelles were found exclusively in a tight perinuclear pattern. Microtubules and microfilaments in TE cells were localized in fixed embryos stained with antitubulin antibodies and rhodamine phalloidin, respectively; these structures were found primarily in the cortical cytoplasm at areas of cell-cell contact and secondarily in a perinuclear location. Thus mitochondria and acidic organelles undergo stage-specific redistributions from a diffuse or cortical pattern at the eight-cell stage to a tight perinuclear localization in the TE. We conclude that the polarized distributions of some organelles and cytoskeletal proteins during compaction may not be reliable permanent markers of the mature TE.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Previous work from our laboratory has demonstrated that heparin specifically inhibits the proliferation of vascular smooth muscle cells in vivo and in vitro. In this paper, we examine the binding and mode of internalization of heparin by smooth muscle cells. For these studies, radiolabeled and fluoresceinated (FITC) heparin probes were synthesized that retained their antiproliferative capacity. Binding of 3H-heparin to these cells occurs via specific, high-affinity binding sites (Kd = 10-9 M, 100,000 binding sites per cell). Approximately 80% of the heparin bound to the cell surface was shed into the culture medium within 2 hr. The heparin that was left on the cell surface was internalized with biphasic kinetics. Approximately 50% of the bound material was internalized within 2 hr. After this initial rapid uptake, the rate slowed substantially, with the remaining heparin requiring 1-2 days to be internalized. Binding and uptake of FITC heparin was monitored using video image intensification fluorescence microscopy. When smooth muscle cells were exposed to FITC heparin at 4°C, a diffuse surface staining pattern was observed. After warming the cells to 37°C, intensely fluorescent vesicles were seen superimposed over the diffuse surface staining within 2 min. After 15 min at 37°C, numerous large punctate vesicles were seen inside the cell. After 2 hr these vesicles had concentrated in the perinuclear region. This pattern of uptake, when considered along with the presence of specific, high-affinity binding sites and the initial rapid uptake of 3H-heparin, suggests that heparin enters smooth muscle cells by both receptor-mediated and other endocytic pathways.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...