Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 211 (1985), S. 9-16 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The ability of PGE2 to stimulate bone resorption in vitro and in vivo is well established but the effects of this compound on bone formation are still controversial. Recent clinical reports have suggested that long-term infusion of PGE in infants with cyanotic heart diseases led to a stimulation of periosteal bone formation and to hyperostosis.In the present report, we describe the effects of PGE2 (10-5 M) in bone organ cultures on bone resorption, measured by the release of 45Calcium and the number of osteoclasts in sections of cultured bones, and bone volume, by measuring separately medullary and cortical areas. PGE2 induced a marked increase in 45Ca release and in cortical and medullary osteoclast numbers over 4 days in vitro; despite this increase in bone resorption, cortical bone volume remained constant, indicating a parallel increase in bone resorption and formation at this site. Morphological and quantitative data demonstrated a higher extent of osteoblastic surface along the periosteum of PGE2-treated bones when compared with control cultures. Medullary bone volume, on the other hand, decreased sharply during the culture period, demonstrating a lack of parallel increase in bone formation at this site.It is concluded that, under these experimental conditions, prostaglandin E2 stimulated both resorption and formation along the periosteum and only bone resorption along the endosteum of the cultured bones. The overall effect of PGE2 on bone as a whole, however, was net bone loss.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 224 (1989), S. 317-324 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The osteoclast is a multinucleated cell that is actively engaged in the synthesis of lysosomal enzymes, their vectorial transport toward the apical membrane, and the secretion of these enzymes at its apical pole. These secreted enzymes are targeted to the apical ruffled-border membrane by mechanisms that involve cation-independent mannose-6-phosphate receptors. These receptors bind to an enzyme-linked mannose-6-phosphate recognition marker in the Golgi complex, and the enzyme-ligand-receptor complex, carried within small coated transport vesicles, dissociates upon reaching the low pH established in the bone-resorbing compartment by the osteoclast. The apical bone-resorbing compartment is sealed off by the attachment of the osteoclast to the calcified matrix and is actively acidified by the osteoclast. The plasma membrane of the cell is divided into distinct domains. The apical membrane at the ruffled-border shares common antigenic determinants with lysosomal and endosomal membranes, including a 100 kD protein and proton pumps that may be involved in the acidification of the extracellular resorbing compartment. The basolateral membrane is highly enriched in sodium pumps. Finally, the cytoplasm of the osteoclast is highly enriched in carbonic anhydrase, and bicarbonate-chloride exchange appears to regulate the intracellular pH of this cell. These observations are consistent with a scheme in which, in the low pH environment of the bone-resorbing lacuna produced by the osteoclast, the mineral phase dissolves, exposing the organic matrix to the action of the secreted enzymes. The activity of these enzymes is in turn presumably favored by the acidic milieu. All constituents of the matrix, whether mineral or organic, then would be reduced to their elemental forms (ions and amino acids) extracellularly. No phagocytic events would be required for the complete degradation of the bone matrix. According to these concepts, therefore, membrane iontransport mechanisms become the most important molecular aspect of bone resorption.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...