Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of nutrition 25 (1986), S. 47-62 
    ISSN: 1436-6215
    Keywords: Tocopherole ; Lipidperoxidation ; Vitamin-E-Status ; Ratte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Description / Table of Contents: Summary For a period of 15 weeks growing rats were fed low fat diets containing equimolar doses of α- and γ-tocopherol (180 and 174 ppm) as well as mixtures of α- and γ-tocopherol (3∶1; 1∶1; 1∶3) without cholesterol or with 1% cholesterol. The influence of these supplements on lipid peroxidation and tocopherol retention in the liver were investigated. The tocopherol status was estimated by measuring the activities of creatine kinase and transaminases (GOT, GPT) in plasma as well as by in vitro hemolysis of erythrocytes. The in vitro hemolysis rate was only lowered by α-tocopherol and the mixtures of α- and γ-tocopherol. In response to lipid peroxidation in the liver, α-tocopherol was the more efficient antioxidant, whereas γ-tocopherol was more efficient in the diet. Cholesterol had a lowering effect on lipid peroxidation in vitro and in vivo; cholesterol in combination with α-tocopherol had a stabilizing effect on the erythrocyte membrane. Moreover, there was a positive effect of cholesterol on tocopherol retention in the liver. The biological activity of γ-tocopherol in relation to α-tocopherol was calculated according to the test criterium; it ranged from 22 to 100%.
    Notes: Zusammenfassung In einer 15wöchigen Ernährungsstudie an Ratten wurde der Einfluß äquimolarer Mengen an α- und γ-Tocopherol (180 bzw. 174 ppm) sowie Mischungen aus α- und γ-Tocopherol (3∶1; 1∶1; 1∶3) ohne und mit Cholesterinbelastung (1 % Cholesterin im Futter) auf die Lipidperoxidation in der Leber und die Lebertocopherolretention untersucht. Zur weiteren Beurteilung des Tocopherolstatus wurden die Aktivitäten der Kreatin-Kinase und der Transaminasen (GOT, GPT) im Plasma sowie die Hämolyseneigung der Erythrozyten bestimmt. Lediglich das α-Tocopherol und die Mischungen aus α- und γ-Tocopherol waren in der Lage, die Hämolyserate der Erythrozyten zu senken. Bezüglich der Lipidperoxidation in der Leber erwies sich das α-Tocopherol als das wirksamere Antioxidans; demgegenüber zeigte das γ-Tocopherol im Futter die höhere Effizienz. Vom Cholesterin ging sowohl in vitro als auch in vivo eine hemmende Wirkung auf die Lipidperoxidation aus; darüber hinaus hatte das Cholesterin in Kombination mit α-Tocopherol einen stabilisierenden Effekt auf die Erythrozytenmembran. Außerdem wurde die Tocopherolspeicherung in der Leber durch Cholesterin begünstigt. Die biologische Wirksamkeit des γ-Tocopherol in Relation zum α-Tocopherol wurde berechnet; sie lag in Abhängigkeit vom jeweiligen Beurteilungskriterium zwischen 22 und 100%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1436-6215
    Keywords: γ-Tocopherol ; Transformation ; α-Tocopherol ; Ratten ; Generationsversuch ; γ-tocopherol ; transformation ; α-tocopherol ; rats ; generation-experiment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Description / Table of Contents: Summary The biosynthesis of α-tocopherol, the most effective vitamer among the vitamin E-group, is found only in higher plants and microorganisms. Due to the lack of the shikimate pathway, animals are not able to synthesize α-tocopherol. Also not found is a whole enterai synthesis; only the conversion of dimethyletocol to trimethyletocol seems to be possible. Using four generations of rats, we sought to determine: Is a transformation of γ-tocopherol to α-tocopherol in the animal body possible? Are there any differences in the transformation rates in organs, tissues, or in the entire body along the generations? Does gut flora play any role in the conversion of γ-tocopherol? Is it possible to increase the efficiency of the transformation by supplying additional CH3-groups? Wistar rats were fed a semisynthetic basal diet, supplemented with 78.8 mg DL-γ-tocopherol/kg in the first three generations (F1–F3). In the fourth generation (F4), some of the animals were fed a vitamin E-free diet and γ-tocopherol (approx. 1.5 mg on alternate days) was injected s.c. Two other groups of animals received the basal diet containing additional methionine (0.25 %) or choline (0.45 %), as well as γ-tocopherol (as in F1–F3). α- and γ-tocopherol were analyzed by HPTLC in the whole body and in serum, liver, heart, lung, gut, gonads, and feces. The ratio of α-/γ-tocopherol (μg/μg) as transformation rate and vitamin E-biopotency (μg α-tocopherol equivalents/g) were calculated. Growth and fertility were normal until the fourth generation; no abnormal developments could be recognized. α-tocopherol was found in the whole-body as well as in all tissues and organs. In the whole-body, vitamin E-biopotency decreased 25–70 % in F2 and F3. On the other hand, the increase of the transformation rate of γ- to α-tocopherol amounted to 23 % (F2) and 168 % (F3). Highest conversion rates were found in F2 and F3 for feces, followed by gonads and lungs; the lowest rates were found for serum and liver. Due to the s.c.-injection of γ-tocopherol, feces showed a four-times lower transformation rate in F4 than in F3. There was an increase in heart, gut, lung and serum for both transformation rate and vitamin E-biopotency. These parameters could be improved also by the additional supplements of methionine and choline. Both methyl-group-donators revealed nearly the same positive effect. The results show that the animal organism can adapt to γ-tocopherol supply over generations. γ-tocopherol seems to be a direct precursor for the α-tocopherol synthesis. The methylation of γ-tocopherol in the organs and tissues occurs, presumably, according to their specific α-tocopherol requirement.
    Notes: Zusammenfassung Die Biosynthese des α-Tocopherols, des wirksamsten Vitamins innerhalb der Vitamin-E-Gruppe, ist beschränkt auf höhere Pflanzen und Mikroorganismen. Wegen des Fehlens des Shikimatweges vermag der tierische Organismus das α-Tocopherol nicht zu bilden. Auch eine vollständige enterale Synthese ist nicht bekannt. Es wird angenommen, daß die Umwandlung im Tierkörper von Dimethyltocol zum Trimethyltocol möglich sei. In einem Experiment an Ratten über vier Generationen wurde folgenden Fragen nachgegangen: Findet eine Umwandlung von γ- zu α-Tocopherol statt? Ändert sich die Effizienz der Transformation auf Gewebs- und Organebene bzw. im gesamten Körper über die Generationen? Welche Rolle spielt die Darmflora? Kann die Effizienz der Transformation durch zusätzliche Gaben an CH3-Gruppen verbessert werden? Über vier Generationen erhielten Wistarratten eine halbsynthetische Grunddiät mit 78,8 mg DL-γ-Tocopherol/kg (F1–F3). In F4 erhielt ein Teil der Tiere die tocopherolfreie Grunddiät, γ-Tocopherol (ca. 1,5 mg, alle zwei Tage) wurde den Tieren subkutan verabreicht. Weitere zwei Kollektive bekamen mit dem Grundfutter γ-Tocopherol (wie in F1–F3) und zusätzlich Methionin (0,24 %) bzw. Cholin (0,45 %) oral verabreicht. In einer Ganzkörperanalyse in F1–F3 und in Serum, Erythrozyten, Leber, Herz, Lunge, Darm, Gonaden und Kot wurden α- und γ-Tocopherol mittels HPTLC bestimmt. Das Verhältnis α-γ-Tocopherol (μg/μg) und die Vitamin-E-Wirksamkeit (μg α-Tocopheroläquivalente/ml bzw. g FS od. g TS) wurden errechnet. Bis zur 4. Filialgeneration waren Wachstum und Fortpflanzungsfähigkeit normal; keine äußeren oder anatomischen Abnormitäten wurden beobachtet. Im Gesamtkörper und in Geweben und Organen der Generationen F1–F4 wurde α-Tocopherol gefunden. Gemessen an den Ergebnissen der Ganzkörperanalyse nahm die Vitamin-E-Wirksamkeit in F2 um 25 % und in F3 um 70 % ab. Die Effizienz der γ-Tocopheroltransformation stieg dagegen um 23 % in F2 und 168 % in F3. Höchste Transformationsraten wurden in F2 und F3 für Kot, gefolgt von Gonaden und Lunge, festgestellt, die niedrigsten für Serum und Leber. Durch die subkutane γ-Tocopherolapplikation war die Transformationsrate im Kot in F4 um Faktor 4 schlechter als in F3. Die Effizienz der Transformation und die Vitamin-E-Wirksamkeit nahmen in Herz, Dickdarm, Lunge und Serum zu. Ebenso besser fielen die Werte für diese Parameter unter der Mehrzufuhr an Methionin und Cholin, wobei sich mit beiden Methylgruppendonatoren die gleiche positive Wirkung erzielen ließ. Die Ergebnisse zeigten, daß sich der Körper an eine γ-Tocopherolzufuhr über Generationen adaptieren kann. γ-Tocopherol dient auch im tierischen Organismus als unmittelbare Vorstufe der α-Tocopherolsynthese. Dieser Syntheseschritt erfolgt wahrscheinlich über eine Transmethylierungsreaktion in den verschiedenen Geweben und Organen gemäß ihrem spezifischen Bedarf an α-Tocopherol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of environmental contamination and toxicology 16 (1987), S. 85-93 
    ISSN: 1432-0703
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Notes: Abstract Rats were fed a casein based diet containing Cd biologically bound in ryegrass (Lolium multiflorum L. ssp. italicum) for eight weeks. The grass portion in the diet was 20% (w/w). Cd concentrations of the respective diets were (μg/g diet): 0.24 (control group Cd=0), 0.85 (group Cd=1) and 2.25 (group Cd=2). After six weeks on the diets, food intake and body weight were reduced by the low dietary Cd concentration (Cd=1), while in treatment group Cd=2 this occurred after 2 weeks. After an 8-week feeding period the concentrations of Cd, Cu, Zn, Fe and Ca in selected organs, tissues and in the excreta of rats beside whole body element contents were determined. While no elevated Cd levels due to the Cd intoxication were found in skin, lung, blood, testes, muscle and urine, Cd concentrations in liver, kidney and spleen increased in a dose-dependent manner. This was also true for whole body Cd and Cd in faeces, the latter being 27.6 fold higher in the high Cd load (Cd=2) as compared to the controls (Cd=0). Highest Cd concentrations were recorded in liver and kidney. Calculated as percentage of the whole body metal content liver Cd increased from 1.49% (Cd=0) to 7.41% (Cd=2) and kidney Cd from 0.65% to 4.87%. While no changes of the Ca levels in all organs and tissues investigated were observed, liver Zn increased and blood Cu decreased. Copper and Zn increased in faeces and decreased in urine. With the exception of skin and lung, a significant loss of Fe was observed in all organs and tissues, which was most evident in treatment group Cd=2. Depending on the Cd dose applied, reduced fecal and urinary Fe excretion occurred. Hematological parameters (hemoglobin, hematocrit, blood glucose) and serum enzyme activities (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, γ-glutamyl transferase) were not affected by Cd in a biologically bound form. Serum alanine amino transferase showed slightly lower activities in treatment groups Cd=1 and Cd=2. Analysis of the glucose concentration and the activity of alkaline phosphatase in urine did not reveal any changes due to the Cd intoxication. Accumulation and toxicological effects of Cd biologically bound in ryegrass are discussed in relation to inorganic forms of the metal administered to mammals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...