Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 51 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: This study focuses on the ability of primary rat brain cells in culture to synthesize angiotensinogen, angio-tensin I, and angiotensin II. HPLC in combination with radioimmunoassay was used to characterize these compounds. Following incubation with 3H-labeled isoleucine, radioactively labeled angiotensinogen with an approximate molecular weight of 25,000 was identified in both glial and neuronal cells. Other molecular weight forms of angiotensinogen with molecular weights of about 300 and 160,000 were present in both cell types. In addition to angiotensinogen, radioactively labeled angiotensin I and angiotensin II were also synthesized by neuronal and glial cells. These results suggest that glial and neuronal cells can synthesize angiotensinogen, angiotensin I, and angiotensin II in a similar manner shown for the peripheral renin angiotensin system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 52 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The degradation pattern and rate of [Ile5]-Angio-tensin (Ang) I, II, and III were studied in neuron-enriched and glia-enriched cells in primary cultures from rat brain. Metabolites were separated by HPLC, and their identities were evaluated by comparison of their retention times with those of synthetic Ang peptide fragments and by analysis of their amino acid composition. Major metabolites were identified as des-Asp1-[Ile5]-Ang I, des-Asp1-[Ile5]-Ang II, [Ile5]-Ang II (3–8) hexapeptide, [Ile5]-Ang II (4–8) pentapeptide, and [Ile5]-Ang II (5–8) tetrapeptide. Glia-enriched cells degraded [Ile5]-Ang I and [Ile5]-Ang III significantly faster than neuron-enriched cells, whereas no difference between the two types of cells was found in the degradation rate of [Ile5]-Ang II. Although the half-lives of [Ile5]-Ang I and [Ile5]-Ang III in neuron-enriched cells from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were not significantly different, neuron-enriched cultures from WKY rats metabolized [Ile5]-Ang II about 2.6 times faster than neuron-enriched cells derived from SHR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...