Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (5)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 85 (1986), S. 5457-5468 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A theory is presented to reduce 1+1 resonance enhanced multiphoton ionization (REMPI) spectra to accurate rovibrational state population distributions. Classical and quantum mechanical treatments are developed to model the polarization dependence of the REMPI signal from an initially aligned ground state having cylindrical symmetry. The theory includes the effects of saturation and intermediate state alignment. It is demonstrated that, for favorable cases, 1+1 REMPI allows the determination of the relative population as well as the quadrupole and hexadecapole moments of the alignment for rovibrational levels of a linear molecule. The classical treatment differs from that of the quantum treatment by less than 5% for rotational quantum numbers greater than J=4, suggesting that the classical treatment suffices for 1+1 REMPI in most molecular systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 85 (1986), S. 5469-5479 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A two-step methodology is presented for extracting ground state population distributions and alignment factors from 1+1 resonance enhanced multiphoton ionization (REMPI) spectra. In the first step the ion signal is corrected for variation with laser intensity as it is collected, generating an isopower spectrum. In the second step populations and alignments are derived from the isopower spectrum by correcting for the interdependent effects of saturation and intermediate state alignment. This procedure is applied to a room temperature thermal distribution of nitric oxide using the 1+1 REMPI process in which lines of the NO A 2Σ+–X 2Π (0,0) band constitute the resonant transition. The present treatment is able to recover the known rovibrational population distribution, independent of branch choice, over a wide range of practical operating conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 3196-3207 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A model is presented to describe the dynamical processes of trapping/desorption as well as direct and indirect inelastic scattering on single-crystal surfaces. Newton's equations of motion are integrated for a system consisting of a rigid rotor interacting with a slab of 19 surface atoms. The surface atom which is closest to the center of mass of the molecule is permitted to translate only along the surface normal. In turn, this mobile surface atom is harmonically coupled to a microcanonical heat bath consisting of three subsurface atoms. This method is much less computationally intensive than the typical generalized Langevin equation (GLE) approach. Direct comparison is made between the predictions of this model and experiment for the NO/Pt(111) system. In the case of trapping/desorption, the model accurately describes the observed dependence of rotational alignment on rotational quantum number. For the inelastic scattering regime, the model successfully reproduces the degree of rotational excitation and qualitatively accounts for the observed rotational alignment. In addition, the model predicts correlations between final state velocity and final state rotational angular momentum (both direction and magnitude), as well as the effect of molecular orientation and surface impact parameter on the overall trapping probability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 3182-3195 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Rotationally resolved experiments on the NO/Pt(111) system explore the mechanisms of inelastic scattering and trapping/desorption. The rotational dynamics associated with these two regimes are markedly different. A neat supersonic NO beam is scattered at normal incidence from a Pt(111) crystal at 375–475 K. The non-Boltzmann rotational population distribution of the scattered species exhibits considerable rotational excitation beyond the energy available from the incident beam. Thus, a surface vibration to rotational energy transfer mechanism must be operative. The accompanying rotational alignment data reveal that highly excited rotational states exhibit predominantly "cartwheel'' motion. In contrast, rotationally excited molecules that desorb from a 553 K Pt(111) surface show a preference for "helicopter'' motion. The opposite preferences for rotational alignment in the two dynamical regimes provide insight into the anisotropy of molecule–surface interactions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 87 (1987), S. 5038-5039 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...