Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: Agrobacterium ; nodulin gene expression ; Rhizobium ; root nodule ; sym-plasmid ; Vicia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nodulin gene expresison was studied in Vicia sativa (common vetch) root nodules induced by several Rhizobium and Agrobacterium strains. An Agrobacterium transconjugant containing a R. leguminosarum symplasmid instead of its Ti-plasmid, that was previously shown to form “empty” nodules on pea, induced nodules on Vicia roots in which nodule cells were infected with bacteria. In the Vicia nodules induced by this transconjugant, two so-called early nodulin genes were found to be expressed, whereas in the nodules formed on pea the expression of only one early nodulin gene was detected. In both cases the majority of the nodulin genes was not expressed. Apparently, an intracellular location of the bacteria is not sufficient for the induction of the majority of the nodulin genes. All nodulin genes were expressed in nodules induced by cured Rhizobium strains containing cosmid clones that have a 10 kb nod region of the sym-plasmid in common. Since in tumours no nodulin gene expression was found at all, the Agrobacterium chromosome does not contribute to the induction of nodulin genes. Therefore it is concluded that the signal for the induction of the expression of the two Vicia early nodulin genes is encoded by the nod-region, and the signal involved in the induction of all other nodulin genes has to be located outside the sym-plasmid, on the Rhizobium chromosome. The apparent difference in early nodulin gene expression between pea and Vicia is discussed in the light of the usefulness of Agrobacterium transconjugants in the study of nodulin gene expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: nodulin cDNA clones ; nodulin gene expression ; pea nodulins ; Rhizobium-legume symbiosis ; root nodule development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA library prepared from pea nodule poly(A)+ RNA was screened by differential hybridization with cDNA probes synthesized from root and nodule RNA respectively. From the cDNA clones that hybridized exclusively with the nodule probe five clones, designated pPsNod 6, 10, 11, 13 and 14 and each containing unique sequences, were further characterized together with one leghemoglobin and one “root-specific” cDNA clone. In vitro translation of RNA selected by the pPsNod clones showed that the corresponding genes encode nodulins with molecular weights ranging from 5 800 to 19 000. During pea root nodule development expression of the five PsNod genes starts more or less concomitantly with the onset of nitrogen fixing activity in the nodules and the time course of appearance and accumulation of the nodulin mRNAs is similar to that of leghemoglobin mRNA. In ineffective pea root nodules expression of the PsNod genes is induced but the final accumulation levels of the mRNAs are markedly reduced to various degrees. The expression of another nodulin gene, designated ENOD2, was followed using a heterologous soybean cDNA clone as probe. In pea root nodules the ENOD2 gene is expressed at least five days before the PsNod and leghemoglobin genes, and in contrast to the PsNod mRNAs the concentration of the ENOD2 mRNA is the same in wild type and fix - nodules. The results described suggest that in root nodules several regulatory mechanisms exist which determine the final nodulin mRNA amounts accumulating in the root nodule.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...