Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Anaesthesia 44 (1989), S. 0 
    ISSN: 1365-2044
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Worcester, Mass. : Periodicals Archive Online (PAO)
    Journal of Social Psychology. 126 (1986) 697-698 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Fish physiology and biochemistry 3 (1987), S. 91-97 
    ISSN: 1573-5168
    Keywords: dipeptidyl carboxypeptidase ; captopril ; MK-422 ; hippuryl-histidyl-leucine ; spectrophotometric assay ; dipeptidyl hydrolase ; fish
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several physical and chemical parameters of angiotensin-converting enzyme (ACE) were determined using a spectrophotometric assay of gill tissue homogenates from rainbow trout. This assay is based on the evolution of free hippuric acid via enzymatic cleavage of histidyl-leucine from the synthetic substrate hippuryl-l-histidyl-l-leucine (HHL). Piscine ACE exhibited enzymatic and kinetic properties similar to those reported for the partially purified mammalian enzyme. Proteolytic activity was both temperature and pH dependent and demonstrated hyperbolic kinetics with an apparent Km of 2.5 mM. Hydrolysis of HHL was activated by Cl− at concentrations between 20 mM and 100 mM. Captopril (1 × 10−6 M) and MK-422 (1 × 10−6 M) blocked trout gill ACE activity, however, EDTA was inhibitory only at high concentrations (1 × 10−3 M). These results demonstrate that trout ACE is functionally similar to mammalian ACE and that the spectro-photometric assay for ACE developed by Cushman and Cheung can be applied to analysis of converting enzyme activity in fish tissue homogenates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The general macrocirculation and branchial microcirculation of the air-breathing climbing perch, Anabas testudineus, was examined by light and scanning electron microscopy of vascular corrosion replicas. The ventral aorta arises from the heart as a short vessel that immediately bifurcates into a dorsal and a ventral branch. The ventral branch distributes blood to gill arches 1 and 2, the dorsal branch to arches 3 and 4. The vascular organization of arches 1 and 2 is similar to that described for aquatic breathing teleosts. The respiratory lamellae are well developed but lack a continuous inner marginal channel. The filaments contain an extensive nutritive and interlamellar network; the latter traverses the filament between, but in register with, the inner lamellar margins. Numerous small, tortuous vessels arise from the efferent filamental and branchial arteries and anastomose with each other to form the nutrient supply for the filament, adductor muscles, and arch supportive tissues. The efferent branchial arteries of arches 1 and 2 supply the accessory air-breathing organs. Arches 3 and 4 are modified to serve primarily as large-bore shunts between the dorsal branch of the ventral aorta and the dorsal aorta. In many filaments from arches 3 and 4, the respiratory lamellae are condensed and have only 1-3 large channels. In some instances in arch 4, shunt vessels arise from the afferent branchial artery and connect directly with the efferent filamental artery. The filamental nutrient and interlamellar systems are poorly developed or absent. The respiratory and systemic pathways in Anabas are arranged in parallel. Blood flows from the ventral branch of the ventral aorta, through gill arches 1 and 2, into the accessory respiratory organs, and then returns to the heart. Blood, after entering the dorsal branch of the ventral aorta, passes through gill arches 3 and 4 and proceeds to the systemic circulation. This arrangement optimizes oxygen delivery to the tissues and minimizes intravascular pressure in the branchial and air-breathing organs. The efficiency of this system is limited by the mixing of respiratory and systemic venous blood at the heart.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 176 (1986), S. 321-331 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The vascular organization and endothelial cell specialization of the air-breathing organs of Anabas testudineus were examined by light and scanning electron microscopy of fixed tissue and vascular corrosion replicas. The vessels supplying blood to the lining of paired suprabranchial chambers and the plicated labyrinthine organs within the chambers are tripartite, having a median artery and paired, lateral veins. Hundreds of respiratory islets, the functional units of gas exchange, cover the surfaces of both the chamber and labyrinthine organ. A median islet artery supplies the central aspect of each islet and gives rise to numerous short arterioles from which the transverse channels are formed. Transverse channels are parallel capillary-sized vessels that extend in two rows away from the medial arterioles and drain laterally into one of two lateral islet veins. Basally situated single rows of endothelial cells lining the transverse channels form thick, evaginated, tongue-like cytoplasmic processes that project freely into the lumen from the tissue side of the channel. Other thin, septate, cytoplasmic exensions of the same cells form valve-like septa that extend across the channel. Both the septa and tongue-like processes appear to direct the red blood cells to the epithelial side of the channel and thus decrease the diffusion distance between the air and red cell. A large sinusoidal space lies under the transverse channels and may support the channels and even elevate them during increased oxygen demand. The epithelium covering the transverse channels is smooth, which enhances air convecton and minimizes unstirred layer effects. The epithelium between the channels contains microvilli that may serve to trap bacteria or particulates and to humidify the air chambers.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...