Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 93 (1986), S. 236-250 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Three fold generations have been recognized in Svecofennian rocks (±1,800 Ma) from West Uusimaa, SW Finland. The first one (F1) might be related to thrusting and imbrication tectonics at plate collision contacts. The main generation (F2) is due to a N-S horizontal crustal shortening, which created at first E-W trending upright folds in the whole region and later tightened these F2 folds in the western part of the belt, whereas conjugate shear zones and tectonic lenses of competent rock bodies developed in the eastern part. Simultaneously the metamorphic conditions rose from amphibolite- to granulite-facies in this eastern part, which is known as the West Uusimaa Complex. The amphibolite- to granulite-facies transition zone along the western boundary of the granulite-facies complex is studied in detail. A number of prograde mineral reactions are telescoped in this transition zone: the breakdown of biotite and amphibole to ortho- ±clino-pyroxene in metaigneous rocks, the appearance of garnet in cordierite-bearing metapelites and the appearance of scapolite in calcareous rocks. Distinct mineralogical changes also occur in this zone which cross cuts all major structures and rock units and are only affected by late-F3 folding (open, disharmonic folds with approximately N-S trending axial planes) and young shear zones, associated with pseudotachylite generation. The absence of any evidence of block faulting and tilting of the crust that could be associated with the granulite complex suggests that the whole region represents one crustal level. A fluid-inclusion study indicates similar pressures for the amphibolite facies and the granulite facies domains. Application of various independent geothermobarometric methods suggest a low pressure (3–5 K bar) and a temperature increase from 550–650° C to 700–825° C, associated with a decreasing water activity (0.1〈aH2O〈0.4) and a general increasing CO2 activity. Fluid inclusions strongly suggest an isobaric amphibolite/granulite transition. There-fore the granulite-facies complex is designated a thermal dome. Whole rock chemical data show that granulite-facies metamorphism is isochemical. Constraints for the Svecokarelian crustal evolution are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...