Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 34 (1989), S. 1289-1294 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: During aerobic growth of Escherichia coli (recombinant K-12 and strain B) on protein hydrolysate (L-broth) and a carbon source (glucose), acetic acid is produced via glucose metabolism until the late log phase. At this point, the culture pH starts to increase and the growth rate decreases. In cultures without further glucose supplementation, these changes are associated with the accumulation of ammonia, the utilization of acetic acid, the depletion of amino acids, and the complete depletion of glucose. We hypothesize that, after depletion of the glucose, the bacteria catabolize amino acids for energy and carbon and give off the nitrogen as ammonia. Also contributing to the overall increase in pH is the depletion of the acetic acid produced earlier as it is metabolized upon exhaustion of glucose. However, there is a lag time of about 1 hour after the initial pH increase before the sustained accumulation of ammonia begins. This lag indicates that an unidentified factor, in addition to the increase in ammonia, contributes to the increase in pH. Advantage was taken of the turnaround from acid production to base production as reflected in the culture pH to implement the addition of glucose. In growth experiments during which the pH was controlled in the basic direction by glucose addition, the observed decrease in growth rate was significantly postponed and the pH change in the basic direction was reversed as a result of acid production by the cells from the newly added glucose. Furthermore, coll densities of twice that obtained without glucose feeding were demonstrated. Based on the media cost per unit cell density, the data indicate a 31% cost savings.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...