Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 129 (1986), S. 111-123 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A monospecific antibody to rat uterine collagenase has been produced and employed to study the cell of origin and the time course of production of this enzyme in the involuting rat uterus. The specificity of the anti-collagenase antibody was confirmed by immunoprecipitation, Western analysis, and by its ability to inhibit the activity of collagenase. Parallel measurements of functional enzyme, both latent and active, bound to tissue collagen were also made in nonpregnant, gravid, and postpartum rat uteri. Immunohistochemical staining of collagenase in sections of rat uterus showed the enzyme to be present in the perinuclear region of the smooth muscle cells only of the involuting myometrium. No detectable collagenase was present in the prepartum or nonpregnant uterus. Identity of the smooth muscle cells was confirmed using an anti-smooth muscle actin antibody. In addition, the cultured uterine cells from which the immunizing antigen was obtained were also identified as smooth muscle cells. Specificity of the tissue staining was confirmed by the ability of pure rat uterine collagenase to block the reaction of the antibody with the tissue. These observations indicate that smooth muscle cells are capable of producing collagenase and are consistent with the hypothesis that this enzyme presides over the massive collagen degradation seen in postpartum uterine involution. Furthermore, measurement of collagenase bound to uterine collagen revealed that collagenase activity could be detected only at the time that the cells could be seen to be producing the enzyme by immunolocalization. These findings support the concept that collagenase is produced only as needed and not stored, either intra- or extracellularly.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have recently shown that degradation of bone collagen by osteoclasts occurs via proteolytic enzyme activity that depends on an acidic milieu. Since bone resorption occurs in an extracellular, acidic compartment located at the cell-matrix attachment site, the osteoclast must deliver the acid collagenolytic enzymes to the cell surface. These observations raise the possibility that the mannose-6-phosphate (M-6-P) receptor, known to sort acidic proteases in other cells, is involved in trafficking lysosomal enzymes to the plasmalemma of bone resorbing cells. To this end we studied receptor-mediated uptake, distribution and release, by isolated chicken osteoclasts, of 125l-hexosaminidase, a M-6-P bearing enzyme. We found that at 4°C, the bone-resorbing polykaryons bind ∼ 10,000 molecules of radioligand/cell with a Kd of 0.7 nM, which is endocytosed by osteoclasts at 37°C by a calcium-independent process. Furthermore, 125l-hexosaminidase uptake is unaffected by mannosylated albumin, documenting specificity of the receptor-mediated event. Release of endocytosed enzyme from the cell is also much more rapid than its degradation, attesting to a pathway of uptake and secretion. By autoradiography, the M-6-P bearing ligand is concentrated at the site of osteoclast-bone attachment. Thus, osteoclasts also have the capacity to deliver M-6-P bearing degradative enzymes to their surface at the site of matrix degradation.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...