Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984
  • 1975-1979  (4)
  • 1955-1959
  • Polymer and Materials Science  (4)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 19 (1975), S. 405-417 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two aromatic polysulfones, poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenyleneisopropylidene-1,4-phenylene) (I) and poly (oxy-1,4-phenylenesulfonyl-1,4-phenylene) (II), undergo crosslinking and chain scission at 30°C during γ-irradiation, the former being predominant in vacuum and the latter in air. Both processes occurred more readily in I, which contains isopropylidene linkages. Gel measurements gave G(crosslink) = 0.051, G(scission) = 0.012 for this polymer at 30°C in vacuum. Increased irradiation temperatures resulted in higher crosslinking and gas yields, especially above the glass transition temperature. The tensile strength, flexural strength, and modulus of I were unaffected by γ-irradiation up to about 50 Mrad in air, but the strength decreased markedly at higher doses. The elongation at break decreased progressively with dose. For both polymers, G(gas) = 0.04 at 30°C with the main products being SO2, H2, CO2, CH4, and H2O.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The aromatic polysulfone poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenyleneiso-propylidene-1,4-phenylene) (I) showed no change in flexural yield strength after doses of γ-radiation up to 600 Mrad in vacuum at 35,80, and 125°C (Tg = 190°C)). However, the flexural strength decreased markedly with doses above 100 Mrad on irradiation in air, to 40-60% of the initial value after 200-400 Mrad, depending on the sample and the irradiation conditions. Chain crosslinking was predominant over scission for irradiation in vacuum at all temperatures; (G(X), G(S), and G(S)/G(X) increased with the irradiation temperature, but G(S)/G(X) decreased to zero above Tg. Poly(oxy-1,4-phenylenesulfonyl-1,4-phenylene) (II) behaved similarly, except that the flexural strength was found to be very dependent on the thermal treatment of the sample. This polymer showed a remarkable retention of its mechanical properties on irradiation up to 200°C (Tg = 230°C) in the absence of air, the flexural strength being retained up to 500 Mrad. Radiation annealing occurred at 35°C in vacuum and air and combined radiation and thermal annealing at 125 and 220°C. Progressive removal of surface layers from flexural test bars of I irradiated in air showed that the decrease in flexural strength with dose could be explained by a decrease in the molecular weight towards the surface resulting from radiation-oxidation reactions.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Fire and Materials 1 (1976), S. 2-8 
    ISSN: 0308-0501
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The flammability and smoke generation properties of a number of organic materials used in ships, including laminated materials, rigid and flexible cellular polymers, cable insulting materials and adhesives, have been evaluated. The relative flammabilities were determined by the limiting oxygen index method that gives convenient, reproducible, numerical ratings of materials. Smoke generation was assessed photometrically by measuring light attenuation under standard conditions and is reported in terms of the total amount of smoke generated, as well as the times for the smoke density to reach an arbitrary ‘critical’ level and the maximum value. Materials with low flammability and low smoke generation characteristics have been identified, as well as those that would be hazardous in the event of a fire.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Fire and Materials 1 (1976), S. 83-84 
    ISSN: 0308-0501
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...