Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (5)
  • 1970-1974  (12)
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 9 (1970), S. 105-113 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 13 (1980), S. 1016-1018 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 8 (1970), S. 921-935 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Several partially interpenetrating polymeric networks (IPN) were made by combining chemically different linear elastomers. The polymer combinations were deposited as films from aqueous emulsions made by mixing the individual emulsions in equal proportions. The films were crosslinked to form two superimposed networks. In two cases, the networks were cleanly separated by hydrolysis of one of the component networks to demonstrate that there was no chemical interaction between the polymers. Measurement of crosslink density showed that, in most cases, partial interpenetration does occur as evidenced by an effective crosslink density of the IPN's greater than the arithmetic mean of the crosslink densities of the component networks. The swelling ratios, densities, and stress-strain properties were determined. For one of the network combinations, a poly(urethane-urea) and a poly(butadiene-acrylonitrile), a series of IPN's varying in polymer composition was made. The swelling ratios and densities are close to the arithmetic means; however, both the tensile strength and crosslink density exhibit a maximum at about 70% poly(butadiene-acrylonitrile). The maximum tensile strength is actually significantly higher than that of either of the component polymers. The elongations all approach that of the poly(urethane-urea), the more extensible material, except for compositions approaching 100% poly(butadiene-acrylonitrile), which exhibit a very low extensibility.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 18 (1974), S. 689-698 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two-component interpenetrating polymer networks (IPN) of the SIN type (simultaneous interpenetrating networks) were prepared from three different polyurethanes and two epoxies. The linear prepolymers were combined in solution, together with crosslinking agents and catalysts, films cast, and subsequently chain extended and crosslinked in situ. Two of the IPN's showed significant improvement in thermal resistance, as measured by thermogravimetric analysis (TGA). All of the IPN's showed maxima in tensile strength significantly higher than the tensile strengths of the component networks at 25% polyurethane and minima at 75% polyurethane. The minima were explained by an initial dilution of the strong polyurethane hydrogen bonds by the epoxies, and the maxima, by an increase in crosslink density due to interpenetration.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 29 (1984), S. 2467-2479 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The influence of chemical structure on mechanical properties of polyurethane ionomers (PU ionomers) has been examined. NCO-terminated prepolymers prepared from primarily 4,4-methylene bis(phenyl isocyanate) (MDI) and poly(oxytetramethylene) glycol (PTMO) were chain extended with tertiary amine-containing diols and the ionomers obtained by quaternization of the prepolymers. The N-methyldiethanolamine chain extender gave the best physical properties. The mechanical properties of the PU ionomers were improved with decreasing chain length of PTMO and with increasing concentration of quaternary ammonium centers (or NCO/OH ratio of PU prepolymers). A lower degree of quaternization resulted in a decrease in the mechanical properties of the resulting PU ionomers, but their properties could be improved by post-quaternization. The adhesion of the PU ionomers to aluminum and the glass transition temperature increased with increasing concentration of quaternizing centers.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 14 (1974), S. 76-78 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Interpenetrating polymer networks of the SIN type (simultaneous interpenetrating networks) composed of a polyacrylate and a polyurethane were prepared. They were made by mixing several concentrations of the linear polymer and prepolymer in solution, together with their respective chain extending and crosslinking agents and catalysts, casting films and curing them in situ. The morphology was studied by differential scanning calorimetry and electron microscopy in order to determine the extent of chain entanglement of the two networks (interpenetration). It was found that little or no phase separation occurred, thus implying extensive interpenetration.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 14 (1974), S. 646-650 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two component topologically-interpenetrating polymer networks were made of the SIN type (simultaneous interpenetrating network) composed of two polyurethanes (a polyether-based and a polyester-based) in combination with an epoxy resin, a polyacrylate and two unsaturated polyesters. The linear polymers and/or prepolymers were combined in solution and in bulk together with the necessary crosslinking agents and catalysts. Films were cast and chains extended and crosslinked in situ. All of the IPN's exhibited one glass transition (Tg) intermediate in temperature to the Tg's of the component networks, and as sharp as the Tg's of the components. This suggests that phase separation may not occur and thus some chain entanglement (interpenetration) of the two networks is involved. The observed Tg's are always several degrees lower than the arithmetic means of the component Tg's. A theory based on interpenetration is developed to account for this.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 22 (1982), S. 1143-1152 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: We review the synthesis, morphology, and physical and mechanical properties of IFNs as well as the related pseudo-IPNs, in which only one of the polymers is crossliriked. Recent studies have shown that the degree of phase separation achieved in these materials is strongly dependent on the compatibility of blends of the linear polymer constituents of the IPN components as well as the kinetics of chain extension and the presence of grafting between component polymers. We illustrate this by a series of IPNs consisting of a polyurethane and an acrylic copolymer. The acrylic is a typical automotive enamel. An enhancement in properties results, which is dependent on the amount of grafting and the kinetics of polymerization. Also discussed are IPNs of a polyurethane and an epoxy, which exhibit a synergism in adhesive properties, and IPNs of a RIM polyurethane with several epoxies and unsaturated polyesters. In addition, also reported are the preliminary studies on the first successful preparation of a three-component IPN, consisting of a polyurethane, an epoxy, and an acrylic.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 18 (1974), S. 683-688 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two-component interpenetrating polymer networks (IPN) of the SIN type (simultaneous interpenetrating networks) were prepared from two different polyurethanes (a polyester type and a polyether type) and a polyacrylate of two different crosslink densities. The linear polymers and prepolymers were combined in solution, together with crosslinking agents and catalysts, films cast, and subsequently chain extended and crosslinked in situ. In all cases, maxima in tensile strengths significantly higher than the tensile strengths of component networks occurred. This was explained by an increase in crosslink density due to interpenetration.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 637-648 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Thermal degradation of model biscarbamates, polyurethanes and poly(urethane-ureas) has been investigated by pyrolysis at atmospheric pressure. The biscarbamates were prepared from phenyl, benzyl, and cyclohexyl isocyanate and ethylene glycol. The polyurethanes and poly(urethane-ureas) were prepared from tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), and 4,4′-dicyclohexylmethane diisocyanate (H12-MDI) and poly(oxyethylene glycols) of various molecular weights. Rate constants for thermal degradation were obtained by measuring carbon dioxide evolution. The thermal degradation of all materials showed that the stability increased in the following manner: aromatic 〈 aralkyl 〈 cycloaliphatic. The separation and identification of the products of the thermal degradation gave an insight into the mechanisms involved in the pyrolysis of aromatic, aralkyl, and cycloaliphatic biscarbamates and the influence of temperature on these mechanisms.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...