Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (4)
  • 1965-1969  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 154 (1984), S. 133-142 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. Audiograms are recorded from one non-echolocating and nine echolocating sympatrically living bat species of South India. These species areCynopterus sphinx (non-echolocating),Tadarida aegyptiaca, Taphozous melanopogon, T. kachhensis, Rhinopoma hardwickei, Pipistrellus dormeri, P. mimus, Hipposideros speoris, H. bicolor andMegaderma lyra. 2. InRhinopoma hardwickei a highly sensitive frequency range was found which is narrowly tuned to the frequency band of the bat's CF-echolocation call (32–35 kHz, Fig. 3). In hipposiderids a ‘filter’ narrowly tuned to the frequency of the CF-part of the CF-FM echolocation sounds (137.5 kHz inH. speoris and 151.5 kHz inH. bicolor, Fig. 5) could be recorded from deeper parts of IC. 3. In the echolocating species the best frequency of the audiograms closely matched with that frequency range in the echolocation calls containing most energy. 4. In bat species foraging flying prey best frequencies of audiograms and height of preferred foraging areas are inversely related, i.e. bat species hunting high above canopy have lower best frequencies than those foraging close to or within canopy (Fig. 6). 5. A hypothesis is forwarded explaining how fluttering target detection by constant frequency echolocation might have evolved from long distance echolocation by pure tone signals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 152 (1983), S. 421-432 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. When catching flying prey under laboratory conditionsRhinolophus ferrumequinum typically emit FM-CF-FM signals (Fig. 2). Except for the last two sounds during approach and final buzz the FM-parts are fainter than the CF-component by a factor of 0.76+-14 (Fig. 1). The final FM-part was undetectable in some signals emitted during approach (Fig. 3). 2. In obstacle avoidance flights both, preceding and final FM-parts are prominent and louder than the CF-part by a factor of 1.14 to 1.63 (Fig. 1 and 3). Bandwidths of the FM-components increased from ca. 3.5 to 12 kHz for the starting and from 12 to 20 kHz on the average for the final FM-sweep (Table 1). 3. In the open field during cruising flightsNyctalus noctula emits pure tones of 22.5 to 25.0 kHz without any frequency modulated components and a duration of 10 to 50 ms (Fig. 4). Brief frequency modulated signals sweeping from ca. 50 to 20 kHz in about 1–2 ms are emitted during pursuit of prey (Fig. 4). 4. Under laboratory conditionsNyctalus noctula does not emit pure tones and is not able to catch flying prey in a flight chamber 10.5×3.5×2.15 m in size. During flights towards a landing platformNyctalus noctula invariably emits brief frequency modulated pulses. During an individual flight the structure is not changed (Fig. 5). 5. InNyctalus noctula specific features of the echolocation pulses, e.g. frequency range swept through, presence of harmonics and double pulses (Fig. 6) are maintained during an individual flight. These specific characteristics of the signal may be used to identify echoes belonging to its own emitted echolocation pulse.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    European archives of psychiatry and clinical neuroscience 211 (1968), S. 43-62 
    ISSN: 1433-8491
    Keywords: Neuronal activity ; EEG-cortex ; Hypoglycemia ; Cat ; Neuronale Aktivität ; EEG-Cortex ; Hypoglykämie ; Katze
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung 1. An Katzen wurden EEG-Veränderungen durch Hypoglykämie hervorgerufen und mit den Aktivitätsveränderungen corticaler Neurone verglichen, wie sie sich bei intracellulären und „quasi-intracellulären“ Ableitungen darstellen. Es zeigte sich, daß pathologische EEG-Veränderungen erst bei niedrigen Blutzuckerwerten (zwischen 30 und 25 mg-%) auftreten und daß es erst bei Werten unter 10–15 mg-% zur elektrischen Stille kommt. 2. Während des flachen, desynchronisierten EEG des wachen Hirns vor Hypoglykämie lassen sich keine Beziehungen zwischen den kleinen EEG- und statistisch verteilten Zellpotentialen nachweisen. — Während der regelmäßigen 8–10/sec- Spindelgruppen, die bei tiefer Hypoglykämie häufig zu beobachten sind, findet sich eine enge Korrelation zwischen den einzelnen Oberflächen-negativen Spindelwellen und Zelldepolarisationen, die meist unterschwellig sind. 3. Bei den langsamen Wellen der δ-Frequenz finden sich ähnliche, aber weniger enge Korrelationen für die flachen, „monomorphen“ δ-Wellen. Andere Formen von langsamen Potentialkomplexen des Cortiocogramms, die im Tintenschreiber als „polymorphe“ δ-Wellen imponieren können, zeigen etwas andere, aber für den einzelnen Wellenkomplex jeweils konstante Beziehungen zur Zellaktivität. 4. Die steilen Wellen wurden unterteilt in primär positive und in primär negative bi- (oder auch tri-)phasische Potentiale. Die primäre Phase der primär-positiven steilen Potentiale ist im Durchschnitt kürzer (unter 20–40 msec) als die negative Phase der primär-negativen Phase (über 100 msec). Die meist überschwellige Zelldepolarisation, die in der Regel zu einer kurzen Gruppenentladung führt, fällt mit der primären Phase, also entweder der positiven oder der negativen zusammen. Die Phasenkoppelung, d. h. die „Synchronisation“ mit dem EEG-Potential, ist jedoch im Fall der primär-positiven Phase enger und die Dauer der Depolarisation kürzer als im Fall der primär-negativen steilen Potentiale. Diese Befunde werden als Hinweis auf eine stärkere Synchronisation der Aktivität der corticalen Nervenzellpopulation im Fall der primär-positiven steilen Potentiale gewertet. 5. Die verschieden engen Phasenkoppelungen und die je nach Steilheit der Wellen wechselnden Phasenbeziehungen zwischen Zellaktivierung und oberflächennegativen resp. -positiven Potentialen werden an Hand eines einfachen Modells der Elektrogenese von EEG-Potentialen erklärt, das den Synchronisationsgrad cortico-petaler und cortico-fugaler Faseraktivität sowie die Summation postsynaptischer Potentiale corticaler Neurone berücksichtigt.
    Notes: Summary 1. The EEG, recorded monopolarly from the pial surface, was investigated during insuline induced hypoglycemia in acute cats and compared with the activity of cortical cells recorded with intra or “quasi-intracellular” electrodes. 2. Pathological changes of the EEG were observed only when the blood glucose fell below 25–30 mg-%. Electrical silence was observed at blood glucose levels below 15–10 mg-%. 3. The essentially flat, “desynchronized” EEG of the awake animal before hypoglycemia did not show any relation between the small, irregular fast EEG- potentials and the statistically distributed cellular potentials. —During the regular 8–10/sec spindles (Fig. 3) a close correlation was found between the single surface- negative spindle waves and the mostly subthreshold compound cellular EPSP's. 4. Slow waves of δ-frequency showed similar but less close correlations, if the waves were of regular appearance comparable to “monomorphic” δ-waves (Fig.4A). Other forms of slow complex potentials (Fig.4B and C), which correspond to “polymorphic” δ-waves in an EEG-record (e.g. Fig.4C and Fig.2d) may show different relations between cellular and EEG-activity which were, however, consistent for each type of complex wave. 5. Sharp waves were divided into primary positive and primary negative bi- (or tri-)phasic potentials. The primary positive phase was always shorter (below 20–40 msec) than the primary negative phase (above 100 msec). The mostly suprathreshold cellular depolarization, which may lead to a short burst of discharge, coincided with the primary, i.e. either the primary positive or the primary negative phase (Fig. 7 shows records from the same cell and different EEG-phenomena). The phase coupling, i.e. the “synchronization” with the EEG-potential, is closer in the primary positive than the primary negative waves, and the duration of the cellular depolarization is also shorter in the former case (compare Fig.7B I–III with 7B IV). This can be interpreted as stronger synchronization of cellular activity during the short primary positive waves. 6. A causal relation between cortical neuronal activity and EEG-potentials is assumed. Differences in the closeness of phase coupling and the changing phase relation between cellular and EEG-activity according to the form and steepness of cortical EEG-potentials are explained by a simple model of electrogenesis of EEG-potentials, which takes in account the degree of synchronization of corticopetal and cortico-fugal fibre activity as well as the summation of postsynaptic potentials of cortical neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. Two hipposiderid bats,H. bicolor andH. speoris, were observed in their natural foraging areas in Madurai (South India). Both species hunt close together near the foliage of trees and bushes but they differ in fine structure of preferred hunting space:H. bicolor hunts within the foliage, especially whenH. speoris is active at the same time, whereasH. speoris never flies in dense vegetation but rather in the more open area (Fig. 1, Table 1). 2. Both species emit CF/FM-sounds containing only one harmonic component in almost all echolocation situations. The CF-parts of CF/FM-sounds are species specific within a band of 127–138 kHz forH. speoris and 147–159 kHz forH. bicolor (Tables 2 and 3). 3. H. speoris additionally uses a complex harmonic sound during obstacle avoidance and during laboratory tests for Doppler shift compensation.H. bicolor consistently emits CF/FM-sounds in these same situations (Fig. 2). 4. Both hipposiderid bats respond to Doppler shifts in the returning echoes by lowering the frequency of the emitted sounds (Fig. 3). However, Doppler compensations are incomplete as the emitted frequencies are decreased by only 55% and 56% (mean values) of the full frequency shifts byH. speoris andH, bicolor, respectively. 5. The differences in Doppler shift compensation, echolocating and hunting behavior suggest thatH. speoris is less specialized on echolocation with CF/FM-sounds thanH. bicolor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 71 (1984), S. 446-455 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...