Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 46 (1982), S. 438-447 
    ISSN: 1432-1106
    Keywords: Deiters' neurons ; Locomotion ; Perturbation ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of mechanical stimulation (tap) on single unit activity of Deiter's neurons were analysed in walking cats decerebrated at the premammillary level. Deiters' neurons projecting to the ipsilateral cervical, but not to the lumbosacral, spinal cord (C-Deiters' neurons) were identified by antidromic activation, cerebellar stimulation, and localization of the neurons. During each unperturbed cycle of quadrupedal locomotion, most C-Deiters' neurons showed two frequency modulation peaks in their impulse discharges: one (A peak) in the late swing (E1) or the early stance (E2) phase, the other (B peak) in the late stance (E3) or the early swing (F) phase, of the ipsilateral forelimb. The A peak started to rise shortly before the ipsilateral forelimb was placed. When mechanical perturbation was applied during locomotion to the paw dorsum of the left forelimb (LF) in its stance phase, the ongoing LF stance phase shortened and the simultaneous swing phase of the right forelimb (RF) shortened. Accordingly, in the RF, extensor activity in the swing phase to place down the limb occurred earlier than in unperturbed step cycles. The same LF tap induced a marked enhancement of impulse discharges in C-Deiters' neurons on the right side (with a magnitude of 20–100 imp/s, and the shortest latency of 25 ms). This enhancement was more pronounced than that induced when the perturbation was applied to the LF during its swing phase. The latency manifested a close time relation to the RF extensor activity supporting the postulate that the increased C-Deiters' activity in the RF swing phase contributes to the earlier onset of RF extensor activity which plays an important role in maintaining alternating footfalls after perturbation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...