Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (4)
  • Alkyl-phenyl cleavage  (2)
  • β-aryl ether dimers  (2)
  • Aggression  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 69 (1980), S. 207-208 
    ISSN: 1432-2072
    Keywords: Pentobarbital ; Aggression ; Fish behavior ; Sexual behavior
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract An experiment was undertaken to determine the effects of pentobarbital sodium on intraspecific attack behavior in male Siamese fighting fish in an attempt to extend earlier findings with chlordiazepoxide and secobarbital sodium. Pairs of fish fought while immersed in 20 μg/ml or 40 μg/ml pentobarbital sodium or plain water. The 40 μg/ml group showed significantly less attack (e.g., biting, jaw locking) than either control or low dose groups without producing a change in general arousal. Quasisexual behavior, seen in an earlier chlordiazepoxide study, did not occur in the present study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin model compounds ; β-Aryl ether dimers ; Metabolism ; Methoxyhydroquinone ; Alkyl-phenyl cleavage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The white rot basidiomycete Phanerochaete chrysosporium metabolized guaiacylglycol-β-guaiacyl ether (I) in high nitrogen, shaking and stationary cultures. 2-(o-Methoxyphenoxy) ethanol (X), 2-(o-methoxyphenoxy) acetic acid (IX) and methoxy-phydroquinone (MHQ) were identified as products of the metabolism of (I). P. chrysosporium also metabolized guaiacylglycerol-β-guaiacyl ether (IV) in high nitrogen stationary cultures. 2-(o-Methoxyphenoxy)-1,3 propanediol (XII) and 3-hydroxy, 2-(o-methoxy-phenyxy) propionic acid (XIV) were identified as products of the metabolism of (IV). Finally, P. chrysosporium metabolized α-deoxyguaiacylglycol-β-guaiacyl ether (VI) and α-deoxyguaiacylglycerol-β-guaiacyl ether (VII) in limiting nitrogen cultures. 2-(o-Methoxyphenoxy) ethanol (X) and 2-(o-methoxyphenoxy)-1,3 propanediol (XII) were identified as products of the metabolism of VI and VII respectively indicating α hydroxylation of those substrates with subsequent alkyl-phenyl bond cleavage. Metabolites were identified after comparison with chemically synthesized standards by GLC-mass spectrometry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin model compounds ; Lignin metabolism ; β-aryl ether dimers ; β-ether cleavage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The white rot basidiomycete Phanerochaete chrysosporium metabolized 4-ethoxy-3-methoxyphenyl-glycerol-β-guaiacyl ether (V) in low nitrogen, stationary cultures under which conditions the ligninolytic enzyme system is expressed. 4-Ethoxy-3-methoxyphenylglycerol XIII, guaicol and 4-ethoxy-3-methoxybenzyl alcohol (II) were isolated as metabolic products. Exogenously added XIII was rapidly converted to 4-ethoxy-3-methoxybenzyl alcohol indicating that it is an intermediate in the metabolism of V. P. chrysosporium also metabolized 1-(4′-ethoxy-3′-methoxyphenyl)-2-(2″-methoxyphenoxy)-3-hydroxypropane VI. The degradation pathway for this dimer also included initial β-ether cleavage and α-hydroxylation of the diol product 1-(4′-ethoxy-3′-methoxyphenyl) 2,3 dihydroxypropane (XI) to yield the triol XIII which was cleaved at the α, β bond to yield 4-ethoxy-3-methoxybenzyl alcohol. Finally P. chrysosporium also cleaved the dimer 1-(4′-ethoxy-3′-methoxyphenyl)-2-(2″-methoxyphenoxy)-1-hydroxypropane (VIII) at the β-ether linkage yielding 1-(4′-ethoxy-3′-methoxyphenyl) 1,2 dihydroxypropane (IX) which was subsequently cleaved at the α, β bond to yield II. All of the results indicate that oxidative β-ether cleavage is an important initial reaction in the metabolism of β-aryl ether lignin substructure dimeric compounds. Metabolities were identified after comparison with chemically synthesized standards by gas liquid chromatography-mass spectrometry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin model compounds ; β-aryl ether dimers ; Metabolism αβ cleavage ; Veratryl alcohol ; 4-ethoxy-3-methoxybenzyl alcohol ; Alkyl-phenyl cleavage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The white rot fungus Phanerochaete chrysosporium metabolized the lignin model compounds veratylglycerol-β-guaiacyl ether I and 4-ethoxy-3-methoxy-phenylglycerol-β-guaiacyl ether V in stationary culture under an atmosphere of 100% oxygen and under nitrogen limiting conditions. 2-(o-methoxyphenoxy)-ethanol VII was identified as a product of the metabolism of both substrates. Veratryl alcohol and 4-ethoxy-3-methoxybenzyl alcohol IV were identified as metabolites of I and V respectively. Metabolites were identified after comparison with chemically synthesized standards by mass spectrometry. These results indicate the existence of an enzyme system capable of directly cleaving the etherated dimers I and V at the α, β bond. The additional identification of 2-(o-methoxyphenoxy)-1,3 propanediol IX as a metabolic product indicates that cleavage of the alkyl-phenyl bond of these dimers or their metabolites also occurs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...