Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (3)
  • Anemia, hemolytic  (1)
  • Respiration  (1)
  • molecular evolution  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 19 (1982), S. 87-103 
    ISSN: 1432-1432
    Keywords: chorion ; molecular evolution ; multigene families ; mutation ; DNA sequence ; substitution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We report and compare the DNA sequences of 14 silkmoth (Antheraea polyphemus) chorion genes, derived from either cDNA or chromosomal DNA clones. Seven of these genes are members of the A multigene family, and seven are members of the B family. Where available, the previously reported (Jones and Kafatos 1980) intronic and extragenic flanking DNA sequences are also considered. Closely related sequences are compared, revealing the types of spontaneous mutations that were fixed during paralogous evolution. Segmental mutations (i.e. mutations other than substitutions) are nearly always interpretable as small duplications or deletions. related to small direct repeats. Segmental mutations are strongly constrained in the coding regions, although they do occur. Nucleotide substitutions also appear to be under selective constraints: relatively few substitutions leading to amino acid replacements are accepted, silent substitutions leading to some codons (especially purine-terminated ones) are disfavored, and different compositional biases are maintained in different parts of the sequences. Other sequence differences can be interpreted as indicative of neutral drift, including most differences in non-coding regions and most T/C transitions in third-base positions. In the non-coding regions, which are thought to be only loosely constrained by selection, transitions are observed more frequently than might be expected: they account for 52% of all substitutions, and they appear to be favored two to threefold over transversions when allowance is made for the skewed base composition of these regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Annals of hematology 45 (1982), S. 249-259 
    ISSN: 1432-0584
    Keywords: Complement, C3b ; Hemoglobinuria, paroxysmal ; Anemia, hemolytic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The efficiency of cytolysis by the terminal complement proteins C5b-9 can be markedly enhanced by C3b molecules bound on the target cell membrane (Hammer et al. 1976). This enhancement was shown to be proportional to the number of C3b molecules on the cell membrane. The present experiments have shown that the hemolytic efficiency of the complement membrane attack system is two to five times greater on paroxysmal nocturnal hemoglobulinuria erythrocytes (PNHE) than on normal human E. This difference is attribut to a derivative of C3, probably C3b, on PNHE since it was abolished by anti-C3 but not by anti-C2. The efficiency of C5b-9 to lyse PNHE was only partially decreased by C3b inactivator and β 1H, indicating that the C3b on PNHE is not readily inactivated by its regulatory proteins. Furthermore, cells from a single severely affected patient consumed 3-fold more C5b6 than normal human E yet concommitantly measured membrane fluidity was normal. From these observations we conclude that cell-bound C3b on PNHE serves two functions: (a) it increases the hemolytic efficiency of membrane attack components of the complement system; and (b) it provides sites for assembly of the alternative pathway convertases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 131 (1982), S. 43-50 
    ISSN: 1432-072X
    Keywords: Respiration ; Molar growth yields ; Thermophile ; Energy conservation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Whole cells of the extreme thermophile Thermus thermophilus HB8 contained a membrane-bound respiratory chain (comprised of nicotinamide nucleotide transhydrogenase, NADH dehydrogenase, menaquinone, and cytochromes b, c, aa3, o), which exhibited a maximum→H+/O quotient of approximately 8 g-ion H+·g-atom O-1 for the oxidation of endogenous substrates. Whole cell respiration at 70° at the expense of endogenous substrates or ascorbate-TMPD generated a transmembrane protonmotive force (Δp) of up to 197 mV and an intracellular phosphorylation poteintial (ΔGp), measured under similar conditions, of approximately 43.9 kJ·mol-1. The measured ΔGp/Δp ratio thus indicated an→H+/ATP quotient of approximately 2.3 g-ion H+·mole ATP-1. Glucose-limited continuous cultures of T. thermophilus at 60°, 70° and 78.5° exhibited extremely low moler growth yields (Y O2 max ≤27.6 g cells·mol O 2 -1 ; Y glucose max ≤64.4 g cells ·mol glucose-1) compared with mesophilic bacteria of similar respiratory chain composition and proton translocation efficiency. These low yields are probably at least partly explained by the extremely high permeability of the cytoplasmic membrane to H+, which thus causes the cells to respire rapidly in order to maintain the protonmotive force at a level commensurate with cell growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...