Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1980-1984  (2)
  • Cerebral cortex  (1)
  • Life and Medical Sciences  (1)
  • Neurons  (1)
  • Barrel
Materialart
Erscheinungszeitraum
Jahr
Schlagwörter
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Anatomy and embryology 163 (1981), S. 185-200 
    ISSN: 1432-0568
    Schlagwort(e): Cerebral cortex ; Neurons ; Lizard ; Tanycytes
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary An electron microscopic analysis was made of the small-celled part of the mediodorsal cortex of the lizard Agama agama. This cortex consists of four layers: Superficial plexiform layer, cellular layer, deep plexiform layer and fiber layer. In the superficial plexiform layer one type of solitary neuron with smooth dendrites is present. Three types of axon terminals can be observed: terminals with a moderately electron dense matrix packed with spherical vesicles (S1 type), axon terminals with an electron lucent matrix containing fewer spherical synaptic vesicles than the S1 type (S2 type) and axon terminals with an electron lucent matrix and scattered pleomorphic synaptic vesicles (F type). F type axon terminals are larger than S terminals. At the pial surface endfeet of tanycytic processes form a limiting glial layer, contacting one another by means of gap junctions. In the cellular layer perikarya of pyramidal neurons are densely packed. The karyoplasm of these neurons shows either evenly dispersed or discretely clumped chromatin. Spiny dendrites arise from the perikarya and extend into both the superficial and deep plexiform layers. The structure of the deep plexiform layer is roughly similar to that of the superficial plexiform layer. The fiber layer contains the majority of the afferent and efferent axons of the mediodorsal cortex. The axons are myelinated and unmyelinated. Between the fibers, scattered solitary neurons are present, often accompanied by glial cells. The lateral ventricle beneath the fiber layer is lined by a single row of ependymal tanycytes. Tanycytic processes traverse the cortical layers and may form endfeet at the pial surface. Protoplasmic excresenses from some ependymal cells protrude into the ventricle.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 172 (1982), S. 45-58 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The degeneration of axon terminals in the small-celled part of the mediodorsal cortex (sMDC) of the lizard Agama agama has been studied after lesions in the dorsal cortex at various survival periods. The Fink-Heimer stain was used to map and demonstrate terminal degeneration with the light and electron microscope. Electron microscopy was used to identify and describe degenerating boutons ultrastructurally. One sham-operated and three unoperated animals served as controls. Between 6 and 21 days postsurgically, degenerating terminals can be seen through 80% of the superficial plexiform layer, the zone adjacent to the cellular layer remaining free of degeneration. Swelling of dendrites in the outer part of the superficial plexiform layer and increased numbers of vacuolar invaginations, both present at short (24 hr-6 days; peak at 48-54 hr) survival periods, can be regarded as reaction to the surgical trauma. Degeneration of axon terminals takes three forms, all of the electron-dense type: gray boutons, degenerating bouton-dendritic spine complexes surrounded or engulfed by glia, and degeneration debris inside glial processes. Several forms of terminal degeneration occur concomitantly at any short (3-12 days) survival time. At longer survival times (15-21 days) only debris is present. From 6 days on, considerable numbers of degenerating structures are present, but the majority of degenerating boutons and debris are associated with reactive glia rather than with dendrites. From these observations it is concluded that in this lizard application of the combined degeneration-Golgi-EM technique would probably lead to little success. Electron microscopy of Fink-Heimer-stained sections suggests that degenerating bouton-dendritic spine complexes and degeneration debris accumulate silver particles, whereas gray boutons do not.
    Zusätzliches Material: 11 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...