Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 23 (1983), S. 140-143 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Recent experiments on model compounds suggest that rodlike polybenzobisoxazole (PBO) and polybenzobisthiazole (PBT) chains are protonated when dissolved in highly acidic solvent. The PBO model compound can exist as a 2H+ ion, with one proton on each nitrogen atom, or (depending on the acidity of the medium) as a 4H+ ion, with two additional protons on the oxygen atoms. The PBT model compounds generally form 2H+ ions, owing to the lower basicity of sulfur atoms relative to oxygen atoms. In the present study, geometry-optimized CNDO/2 calculations have been carried out in an attempt of predict the effect of protonation on the conformational characteristics and geometry of PBO model compounds. Values of the conformational energy vs. rotation of the endphenylenes about the heterocyclic group are calculated for cis-PBO model compounds in the unprotonated form and as 2H+ and 4H+ ions. All three species prefer the coplanar conformation with maximum barriers, occurring at the perpendicular conformation, of approximately 8.4, 33.6, and 84.0 kJ mol-1 for the unprotonated form, the 2H+ ion, and the 4H+ ion, respectively. Steric arguments would suggest that repulsions between the acidic protons and the ortho hydrogens on the phenylenes would render the coplanar conformation more repulsive than other orientations. However, detailed analysis of the optimized geometries reveals that the rotatable bond shortens with protonation, indicating an increased bond strength and, hence, increased conjugation energy.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...