Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (16)
  • Chemistry  (16)
Material
Years
Year
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 14 (1982), S. 839-847 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relative rate constants for the reaction of OH radicals with a series of ketones have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of hydroxyl radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10-12 cm3 molecule-1 s-1, the rate constants obtained are (× 1012 cm3 molecule-1 s-1): 2-pentanone, 4.74 ± 0.14; 3-pentanone, 1.85 ± 0.34; 2-hexanone, 9.16 ± 0.61; 3-hexanone, 6.96 ± 0.29; 2,4-dimethyl-3-pentanone, 5.43 ± 0.41; 4-methyl-2-pentanone, 14.5 ± 0.7; and 2,6-dimethyl-4-heptanone, 27.7 ± 1.5. These rate constants indicate that while the carbonyl group decreases the reactivity of C—H bonds in the α position toward reaction with the OH radical, it enhances the reactivity in the β position.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 14 (1982), S. 919-926 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relative rate constants for the gas-phase reactions of OH radicals with a series of alkyl nitrates have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10-12 cm3/molec·s, the rate constants obtained are (× 1012 cm3/molec·s): 2-propyl nitrate, 0.18 ± 0.05; 1-butyl nitrate, 1.42 ± 0.11; 2-butyl nitrate, 0.69 ± 0.10; 2-pentyl nitrate, 1.87 ± 0.12; 3-pentyl nitrate, 1.13 ± 0.20; 2-hexyl nitrate, 3.19 ± 0.16; 3-hexyl nitrate, 2.72 ± 0.22; 3-heptyl nitrate, 3.72 ± 0.43; and 3-octyl nitrate, 3.91 ± 0.80. These rate constants, which are the first reported for the alkyl nitrates, are significantly lower than those for the parent alkanes, and a formula, based on the numbers of the various types of C—H bonds in the alkyl nitrates, is derived for rate constant estimation purposes.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 15 (1983), S. 75-81 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relative rate constants for the reaction of OH radicals with a series of α,β-unsaturated carbonyls have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with propene of 2.52 × 10-11 cm3/molec·s, the rate constants obtained are (× 1011 cm3/molec·s: acrolein, 1.83 ± 0.13; crotonaldehyde, 3.50 ± 0.40; methacrolein, 2.85 ± 0.23; and methylvinylketone, 1.88 ± 0.14). These data, which are necessary input to chemical computer models of the NOx-air photooxidations of conjugated dialkenes, are discussed and compared with literature values.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 15 (1983), S. 1161-1177 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relative rate constants for the gas-phase reactions of OH radicals with a series of cycloalkenes have been determined at 298 ± 2 K using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with isoprene of 9.60 × 10-11 cm3 molecule-1 s-1, the rate constants obtained were (X 1011 cm3 molecule-1 s-1): cyclopentene 6.39 ± 0.23, cyclohexene 6.43 ± 0.17, cycloheptene 7.08 ± 0.22, 1,3-cyclohexadiene 15.6 ± 0.5, 1,4 cyclohexadiene 9.48 ± 0.39, bicyclo[2.2.1]-2-heptene 4.68 ± 0.39, bicyclo[2.2.1] 2,5 heptadiene 11.4 ± 1.0, and bicyclo[2.2.2] 2 octene 3.88 ± 0.19. These data show that the rate constants for the nonconjugated cycloalkenes studied depend on the number of double bonds and the degree of substitution per double bond, and indicate that there are no obvious effects of ring strain energy on these OH radical addition rate constants. A predictive technique for the estimation of OH radical rate constants for alkenes and cycloalkenes is presented and discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 1175-1186 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Using a relative rate technique, rate constants for the gas phase reactions of the OH radical with n-butane, n-hexane, and a series of alkenes and dialkenes, relative to that for propene, have been determined in one atmosphere of air at 295 ± 1 K. The rate constant ratios obtained were (propene = 1.00): ethene, 0.323 ± 0.014; 1-butene, 1.19 ± 0.06; 1-pentene, 1.19 ± 0.05; 1-hexene, 1.40 ± 0.04; 1-heptene, 1.51 ± 0.06; 3-methyl-1-butene, 1.21 ± 0.04; isobutene, 1.95 ± 0.09; cis-2-butene, 2.13 ± 0.05; trans-2-butene, 2.43 ± 0.05; 2-methyl-2-butene, 3.30 ± 0.13; 2,3-dimethyl-2-butene, 4.17 ± 0.18; propadiene, 0.367 ± 0.036; 1,3-butadiene, 2.53 ± 0.08; 2-methyl-1,3-butadiene, 3.81 ± 0.15; n-butane, 0.101 ± 0.012; and n-hexane, 0.198 ± 0.017. From a least-squares fit of these relative rate data to the most reliable literature absolute flash photolysis rate constants, these relative rate constants can be placed on an absolute basis using a rate constant for the reaction of OH radicals with propene of 2.63 × 10-11 cm3 molecule-1 s-1. The resulting rate constant data, together with previous relative rate data from these and other laboratories, lead to a self-consistent data set for the reactions of OH radicals with a large number of organics at room temperature.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 469-481 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relative rate constants for the reaction of OH radicals with a series of branched alkanes have been determined at 297 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10-12 cm3/molecule · s, the rate constants obtained are (× 1012 cm3/molecule · s): isobutane, 2.29 ± 0.06; 2-methylbutane, 3.97 ± 0.11; 2,2-dimethylbutane, 2.66 ± 0.08; 2-methylpentane, 5.68 ± 0.24; 3-methylpentane, 5.78 ± 0.11; 2,2,3-trimethylbutane, 4.21 ± 0.08; 2,4-dimethylpentane, 5.26 ± 0.11; methylcyclohexane, 10.6 ± 0.3; 2,2,3,3-tetramethylbutane, 1.06 ± 0.08; and 2,2,4-trimethylpentane, 3.66 ± 0.16. Rate constants for 2,2-dimethylbutane, 2,4-dimethylpentane, and methylclohexane have been determined for the first time, while those for the other branched alkanes are in generally good agreement with the literature data. Primary, secondary, and tertiary group rate constants at room temperature have been derived from these and previous data for alkanes and unstrained cycloalkanes, with the secondary and tertiary group rate constants depending in a systematic manner on the identity of the neighboring groups. The use of these group rate constants, together with a previous determination of the effect of ring strain energy on the OH radical rate constants for a series of cycloalkanes, allows the a priori estimation of OH radical rate constants for alkanes and cycloalkanes at room temperature.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 15 (1983), S. 37-50 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relative rate constants for the gas-phase reactions of OH radicals with a series of bi- and tricyclic alkanes have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10-12 cm3/molec·s, the rate constants obtained are (× 1012 cm3/molec·s): bicyclo[2.2.1]heptane, 5.53 ± 0.15; bicyclo[2.2.2]octane, 14.8 ± 1.0; bicyclo[3.3.0]octane, 11.1 ± 0.6; cis-bicyclo[4.3.0]nonane, 17.3 ± 1.3; trans-bicyclo[4.3.0]nonane, 17.8 ± 1.3; cis-bicyclo[4.4.0]decane, 20.1 ± 1.4; trans-bicyclo[4.4.0]decane, 20.6 ± 1.2; tricyclo[5.2.1.02,6]decane, 11.4 ± 0.4; and tricyclo[3.3.1.13,7]decane, 23.2 ± 2.1. These data show that overall ring strain energies of ≲4-5 kcal mol-1 have no significant effect on the rate constants, but that larger ring strain results in the rate constants being decreased, relative to those expected for the strain-free molecules, by ratios which increase approximately exponentially with the overall ring strain.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 15 (1983), S. 721-731 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rate constants for the gas-phase reactions of O3 with a series of cycloalkenes and with cis-2-butene have been determined at 297 ± 1 K. The rate constants obtained were (in units of 10-16 cm3/molecule·s): cis-2-butene, 1.38 ± 0.16; cyclopentene, 2.75 ± 0.33; cyclohexene, 1.04 ± 0.14; cycloheptene, 3.19 ± 0.36; 1,3-cyclohexadiene, 19.7 ± 2.8; 1,4-cyclohexadiene, 0.639 ± 0.074; bicyclo[2.2.1]-2-heptene, 21.4 ± 3.5; bicyclo[2.2.1]-2,5-heptadiene, 46.8 ± 12.9; and bicyclo[2.2.2]-2-octene, 0.728 ± 0.090. These data for cis-2-butene, cyclopentene, and cyclohexene are compared with previous literature data, and the effects of ring strain on the rate constants are discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 13 (1981), S. 1133-1142 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rate constants for the gas-phase reactions of O3 with the carbonyls acrolein, crotonaldehyde, methacrolein, methylvinylketone, 3-penten-2-one, 2-cyclohexen-1-one, acetaldehyde, and methylglyoxal have been determined at 296 ± 2 K. The rate constants ranged from 〈6 × 10-21 cm3 molecule-1 s-1 for acetaldehyde to 2.13 × 10-17 cm3 molecule-1 s-1 for 3-penten-2-one. The substituent effects of —CHO and CH3CO— groups on the rate constants are assessed and discussed, as are implications for the atmospheric chemistry of the natural hydrocarbon isoprene.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 14 (1982), S. 13-18 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rate constants for the gas-phase reactions of O3 with ethene, propene, 1-hexene, 1-heptene, styrene, o-, m-, and p-cresol, o- and m-xylene, benzylchloride, acrylonitrile, and trichloroethene have been determined at 296 ± 2 K. The rate constants ranged from 〈5 × 10-21 cm3 molecule-1 s-1 for m-xylene to 2.16 × 10-17 cm3 molecule-1 s-1 for styrene, with those for ethene, propene, and 1-hexene being in excellent agreement with literature data.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...