Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1980-1984  (2)
  • Life and Medical Sciences  (2)
Materialart
Erscheinungszeitraum
Jahr
Schlagwörter
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 163 (1980), S. 253-281 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Mastication has been studied by cinematography with synchronized electromyography (computer quantified and analyzed), while unanesthetized, freely feeding cats (Felis catus) were reducing equivalent-sized chunks of raw and cooked beef and cooked chicken. Cats reduce food on one side at a time, and their chewing cycles show both horizontal and anteroposterior deflections. Food objects are shifted from side to side by lateral jerks of the head and movements of the tongue.During the opening phase, the lower jaw is rotated relatively straight downward, and the digastric muscles are active in bilateral symmetry. Near the end of opening, the head jerks upward, both zygomaticomandibulares start to fire, and opening acceleration of the mandible decreases. Closing starts with horizontal displacement of the mandibular canines toward the working side, accompanied by asymmetrical activities from the working side deep temporalis and the balancing side medial pterygoid, as well as a downward jerk of the head. As closing proceeds, the mandibular canines remain near the working side and the working side zygomaticomandibularis and deep masseter are very active. Near the end of closing, the mandibular canine on the working side moves toward the midline, and adductors, digastrics, and lateral pterygoids of both sides are active. The adductors of the working side are generally more active than those of the balancing side.During a reduction sequence, the number and shape of the masticatory cycles, as well as movements of the head, during a reduction sequence are affected significantly by food type. As reduction proceeds, the duration of bite and the muscular activity (as characterized by number and amplitude of spikes) change significantly among muscles of the working and balancing sides. The adductors of the working side are generally most active when cats chew raw beef, less for cooked beef, and least for cooked chicken. In general, the adductor activity reflects food consistency, whereas that of the digastrics and lateral pterygoids reflects more the vertical and lateral displacements of the mandible. Statistical analysis documents that the methods of electrode insertion and test give repeatable results for particular sites in different animals. Thus, it should be possible to compare these results with those produced while other mammalas are masticating.
    Zusätzliches Material: 14 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 163 (1982), S. 195-222 
    ISSN: 0002-9106
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: Bufo marinus catches its prey by stiffening the intrinsic muscles of the tongue, rapidly flipping the tongue out of the mouth. High-speed cinematography synchronized with computer-analyzed electromyograms (EMGs) shows that during the flip the tongue is supported by the M. genioglossus medialis and that this muscle stiffens into a rod when stimulated. Coincident stiffening of the transversely arranged M. genioglossus basalis provides a wedge under the anterior tip of this rod. Stiffening of the M. submentalis depresses the mandibular symphysis and brings the dentary tips together. The M. submentalis also acts on the wedge of the basalis to raise and rotate the rigid rod of the medialis over the symphysial attachment. The tip of this lingual rod carries along the pad and soft tissues of the tongue. The lingual pad, positioned in the posterodorsal portion of the resting tongue, rotates during eversion so that its dorsal surface impacts onto the prey object. Retraction starts by contraction of the elongate, parallel fibers of the M. hyoglossus; this retracts the medial sulcus of the pad and holds the prey by a suction cup-like effect. The extensibility of the buccal membranes allows the pad to be retracted first; it reaches the posterior portion of the buccal cavity before the still-rigid, backward rotating M. genioglossus has reached the level of the symphysis.Protraction of the hyoid facilitates the extension of the M. hyoglossus. The M. sternohyoideus only retracts the hyoid and stabilizes it when the tongue starts to pull posteriorly; it does not assist tongue protrusion. The Mm. petrohyoideus and omohyoideus show only incidental activity, and the M. depressor mandibulae participates in mouth opening but is not otherwise involved in the flip.Previous hypotheses of the flipping mechanism are reviewed and evaluated.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...