Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (3)
  • β-d-galactosidase  (2)
  • Polymer and Materials Science
  • corn
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biochemical genetics 21 (1983), S. 177-189 
    ISSN: 1573-4927
    Keywords: β-d-galactosidase ; β-d-glucosidase ; electrophoresis ; genetics ; rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Three different types of β-d-galactosidase (EC 3.2.1.23) could be distinguished in rabbit tissues using electrophoretic procedures. (1) Acid β-d-galactosidase with a low mobility and maximal activity at pH 3–5 was found in the particulate fraction of various tissue homogenates. This enzyme hydrolyzed 4-methylumbelliferyl-d-galactoside, but no activity against other glycoside substrates could be demonstrated. The enzyme was inhibited by galactono-(1 → 4)-lactone. (2) Lactose-hydrolyzing β-d-galactosidase with an intermediate mobility was found only in juvenile small intestine. Most of the activity was found in the particulate fraction of the cell. The enzyme hydrolyzed several other synthetic glycoside substrates besides lactose. It was most active at pH 5–6 and strongly inhibited by glucono-(1 → 5)-lactone but not much affected by galactono-(1 → 4)-lactone. (3) Neutral β-d-galactosidase with a fast mobility and maximal activity at pH 6–8 was found in the soluble fraction of homogenates from liver, kidney, and small intestine. This enzyme also showed a broad substrate specificity; it possessed activity against aryl-β-d-glucoside, -fucoside, and -galactoside substrates but not against lactose. The enzyme was strongly inhibited by glucono-(1 → 5)-lactone and (less) by galactone-(1 → 4)-lactone. Neutral β-d-galactosidase and neutral β-d-glucosidase (EC 3.2.1.21) are probably identical enzymes in the rabbit. Individual variation, in both electrophoretic mobility and activity, was found for neutral β-d-galactosidase. Genetic analysis of the electrophoretic variants revealed that two alleles at an autosomal locus are responsible for this variation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biochemical genetics 21 (1983), S. 177-189 
    ISSN: 1573-4927
    Keywords: β-d-galactosidase ; β-d-glucosidase ; electrophoresis ; genetics ; rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Three different types of β-d-galactosidase (EC 3.2.1.23) could be distinguished in rabbit tissues using electrophoretic procedures. (1) Acid β-d-galactosidase with a low mobility and maximal activity atpH 3–5 was found in the particulate fraction of various tissue homogenates. This enzyme hydrolyzed 4-methylumbelliferyl-d-galactoside, but no activity against other glycoside substrates could be demonstrated. The enzyme was inhibited by galactono-(1 → 4)-lactone. (2) Lactose-hydrolyzing β-d-galactosidase with an intermediate mobility was found only in juvenile small intestine. Most of the activity was found in the particulate fraction of the cell. The enzyme hydrolyzed several other synthetic glycoside substrates besides lactose. It was most active atpH 5–6 and strongly inhibited by glucono-(1 → 5)-lactone but not much affected by galactono-(1 → 4)-lactone. (3) Neutral β-d-galactosidase with a fast mobility and maximal activity atpH 6–8 was found in the soluble fraction of homogenates from liver, kidney, and small intestine. This enzyme also showed a broad substrate specificity; it possessed activity against aryl-β-d-glucoside, -fucoside, and -galactoside substrates but not against lactose. The enzyme was strongly inhibited by glucono-(1 → 5)-lactone and (less) by galactone-(1 → 4)-lactone. Neutral β-d-galactosidase and neutral β-d-glucosidase (EC 3.2.1.21) are probably identical enzymes in the rabbit. Individual variation, in both electrophoretic mobility and activity, was found for neutral β-d-galactosidase. Genetic analysis of the electrophoretic variants revealed that two alleles at an autosomal locus are responsible for this variation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 20 (1982), S. 2765-2772 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Charge transfer (CT) interaction is described in semiconducting dispersions of TCNQ complex salt \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm Et}_3 {\rm NH}^+ ({\rm TCNQ})_2^{\cdot^{\hskip-3.7pt\hbox{--}}}$\end{document} with and without added TCNQ°, in poly(vinyl acetal) matrices in which the electron-donor moiety is varied. The extent of CT interaction was determined in films and in solution (DMF, acetonitrile, or methylene chloride) through the absorbances at 398 nm (\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm TCNQ}{\ }^{\cdot^{\hskip-3.7pt\hbox{--}}}$\end{document} and TCNQ°) and 857 nm \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm TCNQ}{\ }^{\cdot^{\hskip-3.7pt\hbox{--}}}$\end{document}. Resistivity of the conductive films was related to the stoichiometry of TCNQ species in the films and found to have a minimum at \documentclass{article}\pagestyle{empty}\begin{document}$[{\rm TCNQ}^\circ]/[{\rm TCNQ}{\ }^{\cdot^{\hskip-3.7pt\hbox{--}}}]\simeq 1$\end{document}. Lower resistivities were attained with films having a uniform, densely packed dispersion of microcrystallites which were obtained at a relatively slow solvent removal rate. With this particular complex salt, strong electron-donor polymers are found to be better matrices for semiconductivity.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...