Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (2)
  • Polymer and Materials Science  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 29 (1984), S. 3803-3812 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The addition of IAD pendant groups to PB molecules results in a larger effective chain crosssectional area with consequent decrease in chain entanglements. This causes the rubber to be more complaint at low strains and strain rates. Simultaneously, the IAD structures give rise to polar and H-bond interactions which cause the material to exhibit strong adhesion and to possess high green strength. As a result, the IAD-PB is a relatively rare example of a synthetic polymer with good autoadhesive properties.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 22 (1984), S. 79-93 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: It has been found that flow-induced coalescence occurs at a very rapid rate during the mixing of polymeric fluids. Furthermore, the rheological properties of the dispersed and continuous phases, as well as the nature of the flow field used in their blending, can greatly influence this coalescence. The significance of these findings is that in the development of a mixing scheme to obtain a desired morphology with minimum expenditure of time or energy, attention is usually focused only on the particle breakup aspects of the blending process. The competing coalescence can, however, be accelerated by the same conditions often employed to facilitate particle breakup (e.g., higher shear rates, reduced dispersed-phase viscosity).A better understanding of the mechanism for coalescence of viscoelastic fluids is clearly required. In this manner optimal blending of immiscible polymers can be achieved with respect to both the nature of the final material and the ease with which it is obtained.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...