Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 113 (1982), S. 373-384 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Bovine adrenal cortex cells maintained on extracellular matrix (ECM)-coated dishes will proliferate actively when serum is replaced by HDL (25 μg protein/ml), insulin (10 ng/ml), and FGF (100 ng/ml). The cells have an absolute requirement for HDL in order to survive and grow. The omission of insulin, FGF, or both results in a slower growth rate and lower final cell density of the cultures. A requirement for transferrin (1 μg/ml) becomes apparent only when cells have been grown for at least four generations in the absence of serum.Early passage (P1-P3) bovine adrenal cortex cells cultured in serum-free medium responded to ACTH (10-8M) with increased 11-deoxycortisol production; this effect was not observed in later passage cells (P7-P15). The cells' ability to utilize LDL-derived cholesterol and to respond to db cAMP (1mM) by increased steroid release was preserved in cells cultured for over 60 generations in the serum-free medium. HDL, although also able to increase steroid production in early-passage cultures exposed to ACTH or to ACTH and dibutyryl cyclic AMP (db cAMP), was 10 fold less potent than LDL. It did not support steroidogenesis in cultures not exposed to these trophic agents.The life span of bovine adrenal cortex cells grown in the serum-free medium on fibronectin (FN)- versus ECM-coated dishes was compared. Cells seeded in serum-containing medium and grown in serum-free medium had a life span of 34 versus 60 generations when maintained on fibronectin- or ECM-coated dishes, respectively. Cells seeded in the complete absence of serum in the serum-free medium on ECM- or fibronectin-coated dishes could be passaged for 26 or 13 generations, respectively. While FGF was an absolute requirement for cells cultured on fibronectin-coated dishes, it was not required when cells were maintained on ECM. These observations demonstrate the influence of the ECM not only in promoting cell growth and differentiation but also on the life span of cultured cells.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The possibilities that the growth-promoting effect of the extracellular matrix (ECM) produced by cultured bovine corneal endothelial (BCE) cells could be due to: (1) adsorbed cellular factors released during the cell lysis process leading to the denudation of the ECM; (2) adsorbed serum or plasma factors: or (3) adsorbed exogenous growth factors have been examined. Exposure of confluent BCE cultures to 2 M urea in medium supplemented with 0.5% calf serum denudes the ECM without cell lysis. The ECM prepared by this procedure supports cell growth just as well as ECM prepared by denudation involving cell lysis. Thus, it is unlikely that the growth-promoting properties of ECM are due to adsorbed cellular factors. When the ECM produced by BCE cells grown in defined medium supplemented with high-density lipoprotein, transferrin, and insulin was compared to the ECMs produced by cells grown in the presence of serum- or plasma-supplemented medium, all were found to be equally potent in stimulating cell growth. It is therefore unlikely that the growth-promoting ability of the ECM is due to adsorbed plasma or serum components. When fibroblast growth factor (FGF)-coated and ECM-coated plastic dishes were submitted to a heat treatment (70°C, 30 min) which results in the inactivation of FGF, the growth-supporting ability of FGF-coated dishes was lost, while the comparable ability of ECM-coated dishes was not affected significantly. This observation tends to demonstrate that the active factor present in the ECM is not FGF. Nor is it platelet derived growth factor (PDGF), since treatment known to destroy the activity of PDGF, such as exposure to dithiothreitol (0.1 M, 30 min, 22°C) or to β-mercaptoethanol (10%) in the presence or absence of 6 M urea for 30 min at 227°C, does not affect the growth-promoting activity of ECM. It is therefore unlikely that the growth-promoting effect of ECM is due to cellular growth-promoting agents or to plasma or serum factors adsorbed onto the ECM.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 13 (1980), S. 339-372 
    ISSN: 0091-7419
    Keywords: extracellular matrix ; FGF ; vascular endothelial cells ; vascular smooth muscle cells ; aging ; differentiation ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In this short review we describe the observations which have led us to conclude that one of the most important components involved in modulating cell proliferation in vitro, and probably in vivo as well, may be the extrac-cellular matrix upon which cells rest.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...