Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 25 (1980), S. 323-347 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Certain organic solutes, including phenol, undergo anomalous enrichment when hyperfiltered through cellulose acetate membranes: the solute concentration is higher in the permeate than in the feed solution. A number of existing theoretical approaches describing hyperfiltration phenomena are presented and their merits and limitations upon application to the transport of phenol discussed. A new two-parameter transport relationship is derived based on an extension of the solution-diffusion model. The enrichment, or negative solute rejection by the membrane, is predicted to occur whenever the pressure-induced solute permeation velocity exceeds that of water. By acknowledging and incorporating the effect of pressure on the chemical potential of the solute, the present extended solution-diffusion model relationship successfully describes hyperfiltration data of phenol in homogeneous and asymmetric cellulose acetate membranes provided the contribution of convective flow to the overall solute transport is insignificant. In addition to the transport parameters of the extended solution-diffusion model, the transport parameters of the phenomenological, Kedem-Spiegler, and combined viscous flow-frictional relationship are evaluated from hyperfiltration data obtained with 0.05 and 0.1 wt % phenol feed solutions and homogeneous cellulose acetate membranes of different acetyl content.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...