Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 16 (1983), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 127 (1980), S. 195-201 
    ISSN: 1432-072X
    Keywords: Methanobacterium thermoautotrophicum ; Cell wall ; Murein ; Pseudomurein ; X-ray diffraction ; Potential energy calculations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to compare possible conformations of murein and pseudomurein from Methanobacterium thermoautotrophicum with one another (especially with respect to the peptide moiety), X-ray diffraction data, density measurements, and conformational energy calculations were used. All results obtained indicated a similar certain layer-like arrangement and similar ringshaped peptide backbone conformations, thus pointing to similar construction principles for the two polymers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Inflammation 6 (1982), S. 269-284 
    ISSN: 1573-2576
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The mechanisms involved in the activation of autolytic enzymes inStaphylococcus aureus, by leukocyte extracts, cationic proteins, phospholipase A2, amines, and membrane-damaging agents was studied in a resting cell system as well as by growing staphylococci. The bacteria were labeled with [14C]N-acetylglucosamine and were subjected to a variety of agents either in 0.1 M acetate buffer, pH 5.0, or in phosphate buffer, pH 7.4. While intact log-phase cultures were found to undergo partial autolysis at pH 5.0 and almost complete lysis at pH 7.4, both heat-killed bacteria and bacterial cell walls were completely resistant to autolysis in buffers. Autolysis at pH 5.0 can be further activated by leukocyte extracts, nuclear histone, crystalline ribonuclease, egg-white and human lysozyme, phospholipase A2, as well as by spermine, spermidine, and polymyxins B and E. The addition of viable log-phase bacteria to radiolabeled heat-killed staphylococci or to radiolabeled cell walls which had been cleaned off autolytic enzymes resulted in degradation of the radiolabeled targets. The data suggest that the various inducers of autolysin activation caused leakage of autolytic enzymes from the intact bacteria which attacked and depolymerized the bacterial cell walls. Anionic polyelectrolytes like heparin, dextran sulfate, suramine, polyglutamic acid, and liquoid (polyanethole sulfonic acid) markedly inhibited both spontaneous and induced lysis. Staphylococci which had grown in the presence of anionic polyelectrolytes became highly resistant to lysis triggered by any of the inducers of autolysis. Since inflammatory exudates are known to be rich in anionic polyelectrolytes, it is suggested that the prolonged survival of intact bacterial cells in such a milieu may be due to the inactivation of autolytic enzymes. It is also postulated that the degradation of certain bacterial species following phagocytosis or extracellular degradation may not be the result of the action of hydrolytic enzymes but rather the result of activation by leukocyte factors of autolytic enzymes which lead to bacteriolysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...