Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Plant Physiology 32 (1981), S. 485-509 
    ISSN: 0066-4294
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 6 (1983), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Starch synthesis by developing wheat endosperm slices incubated in liquid media was more rapid, at optimum concentration, from sucrose as external substrate than from glucose and/or fructose. Fructose inhibited conversion of sucrose or glucose. The results are consistent with the hypothesis that sucrose is not hydrolysed in the apoplast before uptake.Besides a diffusional influx and efflux of labelled sucrose there was a non-diffusional influx; it was inhibited by dinitrophenol, potassium arsenate, potassium iodide, and parachloromercuribenzene sulphonate (PCMBS). PCMBS inhibited both uptake and conversion of label from 150 molm−314C-sucrose by 75%. Uptake and conversion of sucrose were stimulated by lowering pH and by fusicoccin, a promoter of proton extrusion.Extracellular solutes like raffinosc and polyethylene glycol stimulated net uptake of label from 14C-sucrose — the larger molecule being more effective — this being due to a non-specific inhibition of diffusional efflux. At too high an osmotic concentration such solutes reduced net uptake; the larger the molecule the lower this transitional concentration.In conclusion, wheat endosperm is better equipped to convert apoplastic sucrose rather than the hydrolysis products to starch; active loading of sucrose possibly involves proton co-transport; and large molecules in the extracellular solution reduce the diffusional elllux of loaded substrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 6 (1983), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Transverse slices through developing grains of Triticum aestivum cv. SUN 9E 16 d after anthesis were incubated in simple defined media with various radioactive labels. In some enzymic assays slices were pretreated with 2.5% Triton X-100 or with 5% butanol to remove cellular membranes and endogenous substrates.Endogenous potassium leaked from endosperm slices into 30mol m−3 sucrose while sucrose was converted partly into starch. Exogenous alkali-ions, except Li+, stimulated conversion of sucrose to insoluble matter, specifically to starch with K+. Starch synthetase activity of Triton-pretreated slices was stimulated by K+ at both high and low substrate ADPG concentration, but was not affected by phosphate (25 mol m−3).Phosphate in the medium had no effect on incorporation of sucrose or glucose into alcohol-insoluble material or starch in fresh slices (internal inorganic phosphate (P,) concentration was about 11 mol m−3). Three- to four-fold contrasts in internal Pi level, achieved by prolonged preincubations in different media, did not show an inhibition of starch synthesis by Pi. However, phosphate (25mol m−3) inhibited starch synthesis, that was mediated by ADPG pyrophosphorylase in butanol-pretreated endosperm slices by 15–18%.It is concluded that starch synthesis in wheat endosperm is not regulated directly by apoplastic Pi; level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...