Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (2)
  • 1
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A piezoelectric ceramic has been investigated as a direct substitute for hard tissues. Barium titanate (BaTiO3) powder was slipcast and fired at 1430°C for 2 hr, then made piezoelectric by polarizing. After 16 and 86 days of implantation in the cortex of the femoral midshafts, the femora with test specimens were sectioned into about 4-cm lengths. Their voltage outputs were measured under cyclic load at 1 Hz. The present results show that the voltage gradient at the implant surface is 0.15 mV/mm for the 16-day implantation with a 445-N (100-lbs.) load. This in turn can give rise to about 0.01 μA current flow in the adjacent area of the 16-day implant. The 86-day implant showed an order of magnitude higher voltage output compared to the 16-day implant with the same magnitude of loads. This is probably due to the “load-transfer” efficiency through the implants, since the voltage output is directly proportional to the actual load transferred to the implant. The more bone implant interface matures, the better the load transfer occurs through the implant, resulting in higher voltage output.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The suitability of barium titanate (BaTiO3) ceramic for direct substitution of hard tissues was evaluated using both electrically stimulated (piezoelectric) and inactive (nonpolarized) test implants. Textured cylindrical specimens, half of them made piezoelectric by polarization in a high electric field, were implanted into the cortex of the midshaft region of the femora of dogs for various periods of time. Interfacial healing and biocompatibility of the implant material were studied using mechanical, microradiographical, and histological techniques. Our results indicate that barium titanate ceramic shows a very high degree of biocompatibility as evidenced by the absence of inflammatory or foreign body reactions at the implant-tissue interface. Furthermore, the material and its surface porosity allowed a high degree of bone ingrowth as evidenced by microradiography and a high degree of interfacial tensile strength. No difference was found between the piezoelectric and the electrically neutral implant-tissue interfaces. Possible reasons for this are discussed. The excellent mechanical properties of barium titanate, its superior biocompatibility, and the ability of bone to form a strong mechanical interfacial bond with it, makes this material a new candidate for further tests for hard tissue replacement.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...