Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (4)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 108 (1981), S. 195-211 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Colchicine and vinblastine inhibited endothelial cell migration but had no effect on the stimulation of replication seen at wound edges in cultures of endothelium at stationary density. This is in contrast to the effects of cyto-chalasins which inhibit both migration and replication at wound edges. Moreover, colchicine and vinblastine stimulated cell replication in the unwounded, confluent monolayer. This effect has kinetics similar to the stimulation of replication at a wound edge and is associated with an initial retraction of cell borders, leaving gaps between cells. Cytochalasin D inhibited the growth response to microtubule disrupting agents but did not prevent cell retraction. Stimulation of replication by microtubule disrupting agents was not dependent on serum but was synergistic with serum in cultures rinsed repeatedly with serum-free medium. The replication occurred prior to any cell loss. When, however, cells were allowed to complete mitosis, about one-half of the daughter cells detached from the monolayer so that there was no increase in cell density. We conclude that microtubule disrupting agents are the first agents found to be effective in stimumating growth of vascular endothelium at saturation density. These data further suggest that colchicine and vinblastine stimulate cell growth in a manner similar to wounding, where cell movement is a prerequisite to cell replication.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 111 (1982), S. 247-254 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Fibroblast growth and synthesis activities appear to be under exquisite control. This control is mediated in part by substances present in blood plasma or released by other cells. We have studied the role of peripheral blood mononuclear cells (PBM) activated with phytohemagglutinin-P (PHA) on DNA synthesis, proliferation, and the cell cycle of human diploid fibroblasts. Culture medium from activated but not from unactivated PBM cultures inhibited fibroblast DNA synthesis and growth in a dose-dependent manner. The activity, which was designated as lymphocyte factor (LF), was very potent; it inhibited 50% of the DNA synthesis and cell growth at a dilution of 1:160. It has a molecular weight between 50,000 and 100,000 daltons and it is destroyed by trypsin digestion or by heating at 80°C for 30 minutes. The activity was not due to the presence of prostaglandin. Furthermore, using immunoprecipitation and affinity chromatography, it was shown conclusively to to be distinctly different from alpha lymphotoxin (α-LT). It was not cytotoxic, as shown by the 51chromium release technique. Using flow microfluorimetry it was shown that the activity regulates fibroblast growth by preventing quiescent cells in the G0 or G1 stage of the cell cycle from entering the S phase. Cells already in S at the time of exposure complete DNA Synthesis but cannot divide, and they accumulate in G2. The activity also has marked effects on protein synthesis. Activated mononuclear cells may play a major role in regulating fibroblast growth and synthesis in normally healing wounds and in acute and chronic inflammatory processes.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The specific activity of DNA polymerase (90% alpha) was determined in nine “neoplastoid” cell lines (Martin and Sprague, 1973) and in three different strains of HDF (human diploid fibroblast-like cells), all examined in logarithmic phases of growth. This was compared to the ability of each cell type to “rescue” (reinitiate DNA synthesis in) senescent HDF cells subsequent to polyethylene glycolmediated cell fusions. A sharp “threshold” value of DNA polymerase activity was observed below which reinitiation of DNA synthesis in heterokaryons with senescent HDF does not occur. This threshold was especially obvious when the specific activity of DNA polymerase (p moles dTTP incorporated per mg protein or per cell) was divided by the percent of S-phase cells present in each culture as determined by flow microfluorometry. Our results indicate that the specific activity of DNA polymerase-alpha (or some other factor tightly coregulated with it) in “recessive” cell types (those unable to rescue senescent cells) is only about two times this theoretical “threshold” value, and that fusion of recessive cell types to senescent HDF cells reduces the specific activity in the heterokaryon to below this minimum, thus preventing the cells from entering S phase.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: It has previously been shown that serum-deprived, early passage quiescent human diploid fibroblastlike (HDFL) cells are able to inhibit cycling cells from entry into DNA synthesis upon cell fusion. We have found that the degree of inhibition of DNA synthesis in the heterokaryon correlates with the duration of serum deprivation, which is consistent with the suggestion that serum-deprived cells may enter progressively deeper stages of G0 as they increase their time in quiescence. In contrast to fusions with senescent cells, in heterokaryons between serum-deprived early passage and cycling young cells transient inhibition of protein synthesis with cycloheximide or inhibition of RNA synthesis with 5-6-dichloro-1-β-D-ribofuranosyl benzimidazole (DRB) did not stimulate nuclear [3H]-thymidine incorporation. These results suggest that differences may exist in the mechanisms responsible for inhibiting cell cycle progression in senescent vs early passage quiescent HDFL cells.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...